Opposite precategories
module category-theory.opposite-precategories where
Imports
open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels
Idea
Let C
be a precategory, its opposite precategory Cᵒᵖ
is given by reversing
every morphism.
Definition
module _ {l1 l2 : Level} (C : Precategory l1 l2) where opposite-Precategory : Precategory l1 l2 pr1 opposite-Precategory = obj-Precategory C pr1 (pr2 opposite-Precategory) x y = hom-Precategory C y x pr1 (pr1 (pr2 (pr2 opposite-Precategory))) f g = comp-hom-Precategory C g f pr2 (pr1 (pr2 (pr2 opposite-Precategory))) f g h = inv (associative-comp-hom-Precategory C h g f) pr1 (pr2 (pr2 (pr2 opposite-Precategory))) x = id-hom-Precategory C {x} pr1 (pr2 (pr2 (pr2 (pr2 opposite-Precategory)))) f = right-unit-law-comp-hom-Precategory C f pr2 (pr2 (pr2 (pr2 (pr2 opposite-Precategory)))) f = left-unit-law-comp-hom-Precategory C f