Orientations of cubes
module univalent-combinatorics.orientations-cubes where
Imports
open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.iterating-functions open import foundation.universe-levels open import univalent-combinatorics.cubes open import univalent-combinatorics.dependent-pair-types open import univalent-combinatorics.equality-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.function-types open import univalent-combinatorics.standard-finite-types
Definition
orientation-cube : {k : ℕ} → cube k → UU (lzero) orientation-cube {k} X = Σ ( vertex-cube k X → Fin 2) ( λ h → ( x y : vertex-cube k X) → Id ( iterate ( number-of-elements-is-finite ( is-finite-Σ ( is-finite-dim-cube k X) ( λ d → is-finite-function-type ( is-finite-eq ( has-decidable-equality-is-finite ( is-finite-axis-cube k X d)) { x d} { y d}) ( is-finite-empty)))) ( succ-Fin 2) ( h x)) ( h y))