Russell's paradox
{-# OPTIONS --lossy-unification #-} module foundation.russells-paradox where
Imports
open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.identity-types open import foundation.locally-small-types open import foundation.negation open import foundation.small-types open import foundation.small-universes open import foundation.surjective-maps open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.empty-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.type-arithmetic-cartesian-product-types open import foundation-core.type-arithmetic-dependent-pair-types open import foundation-core.universe-levels open import trees.multisets open import trees.small-multisets open import trees.universal-multiset
Idea
Russell's paradox arises when a set of all sets is assumed to exist. In
Russell's paradox it is of no importance that the elementhood relation takes
values in propositions. In other words, Russell's paradox arises similarly if
there is a multiset of all multisets. We will construct Russell's paradox from
the assumption that a universe U
is equivalent to a type A : U
. We conclude
that there can be no universe that is contained in itself. Furthermore, using
replacement we show that for any type A : U
, there is no surjective map
A → U
.
Definition
Russell's multiset
Russell : (l : Level) → 𝕍 (lsuc l) Russell l = comprehension-𝕍 ( universal-multiset-𝕍 l) ( λ X → X ∉-𝕍 X)
Properties
If a universe is small with respect to another universe, then Russells multiset is also small
is-small-Russell : {l1 l2 : Level} → is-small-universe l2 l1 → is-small-𝕍 l2 (Russell l1) is-small-Russell {l1} {l2} H = is-small-comprehension-𝕍 l2 { lsuc l1} { universal-multiset-𝕍 l1} { λ z → z ∉-𝕍 z} ( is-small-universal-multiset-𝕍 l2 H) ( λ X → is-small-∉-𝕍 l2 {l1} {X} {X} (K X) (K X)) where K = is-small-multiset-𝕍 (λ A → pr2 H A) resize-Russell : {l1 l2 : Level} → is-small-universe l2 l1 → 𝕍 l2 resize-Russell {l1} {l2} H = resize-𝕍 (Russell l1) (is-small-Russell H) is-small-resize-Russell : {l1 l2 : Level} (H : is-small-universe l2 l1) → is-small-𝕍 (lsuc l1) (resize-Russell H) is-small-resize-Russell {l1} {l2} H = is-small-resize-𝕍 (Russell l1) (is-small-Russell H) equiv-Russell-in-Russell : {l1 l2 : Level} (H : is-small-universe l2 l1) → (Russell l1 ∈-𝕍 Russell l1) ≃ (resize-Russell H ∈-𝕍 resize-Russell H) equiv-Russell-in-Russell H = equiv-elementhood-resize-𝕍 (is-small-Russell H) (is-small-Russell H)
Russell's paradox obtained from the assumption that U
is U
-small
paradox-Russell : {l : Level} → ¬ (is-small l (UU l)) paradox-Russell {l} H = no-fixed-points-neg ( R ∈-𝕍 R) ( pair (map-equiv β) (map-inv-equiv β)) where K : is-small-universe l l K = pair H (λ X → pair X id-equiv) R : 𝕍 (lsuc l) R = Russell l is-small-R : is-small-𝕍 l R is-small-R = is-small-Russell K R' : 𝕍 l R' = resize-Russell K is-small-R' : is-small-𝕍 (lsuc l) R' is-small-R' = is-small-resize-Russell K abstract p : resize-𝕍 R' is-small-R' = R p = resize-resize-𝕍 is-small-R α : (R ∈-𝕍 R) ≃ (R' ∈-𝕍 R') α = equiv-Russell-in-Russell K abstract β : (R ∈-𝕍 R) ≃ (R ∉-𝕍 R) β = ( equiv-precomp α empty) ∘e ( ( left-unit-law-Σ-is-contr { B = λ t → (pr1 t) ∉-𝕍 (pr1 t)} ( is-contr-total-path' R') ( pair R' refl)) ∘e ( ( inv-associative-Σ (𝕍 l) (_= R') (λ t → (pr1 t) ∉-𝕍 (pr1 t))) ∘e ( ( equiv-tot ( λ t → ( commutative-prod) ∘e ( equiv-prod ( id-equiv) ( inv-equiv ( ( equiv-concat' _ ( p)) ∘e ( eq-resize-𝕍 ( is-small-multiset-𝕍 is-small-lsuc t) ( is-small-R'))))))) ∘e ( associative-Σ ( 𝕍 l) ( λ t → t ∉-𝕍 t) ( λ t → ( resize-𝕍 ( pr1 t) ( is-small-multiset-𝕍 is-small-lsuc (pr1 t))) = ( R))))))
There can be no surjective map f : A → U
for any A : U
no-surjection-onto-universe : {l : Level} {A : UU l} (f : A → UU l) → ¬ (is-surjective f) no-surjection-onto-universe f H = paradox-Russell ( is-small-is-surjective H ( is-small') ( is-locally-small-UU))