Inequality on the integers

module elementary-number-theory.inequality-integers where
Imports
open import elementary-number-theory.addition-integers
open import elementary-number-theory.difference-integers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.integers
open import elementary-number-theory.natural-numbers

open import foundation.coproduct-types
open import foundation.functions
open import foundation.functoriality-coproduct-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

Definition

leq-ℤ-Prop :     Prop lzero
leq-ℤ-Prop x y = is-nonnegative-ℤ-Prop (y -ℤ x)

leq-ℤ :     UU lzero
leq-ℤ x y = type-Prop (leq-ℤ-Prop x y)

is-prop-leq-ℤ : (x y : )  is-prop (leq-ℤ x y)
is-prop-leq-ℤ x y = is-prop-type-Prop (leq-ℤ-Prop x y)

Properties

refl-leq-ℤ : (k : )  leq-ℤ k k
refl-leq-ℤ k = tr is-nonnegative-ℤ (inv (right-inverse-law-add-ℤ k)) star

antisymmetric-leq-ℤ : {x y : }  leq-ℤ x y  leq-ℤ y x  x  y
antisymmetric-leq-ℤ {x} {y} H K =
  eq-diff-ℤ
    ( is-zero-is-nonnegative-ℤ K
      ( is-nonnegative-eq-ℤ (inv (distributive-neg-diff-ℤ x y)) H))

trans-leq-ℤ : (k l m : )  leq-ℤ k l  leq-ℤ l m  leq-ℤ k m
trans-leq-ℤ k l m p q =
  tr is-nonnegative-ℤ
    ( triangle-diff-ℤ m l k)
    ( is-nonnegative-add-ℤ
      ( m +ℤ (neg-ℤ l))
      ( l +ℤ (neg-ℤ k))
      ( q)
      ( p))

decide-leq-ℤ :
  {x y : }  (leq-ℤ x y) + (leq-ℤ y x)
decide-leq-ℤ {x} {y} =
  map-coprod
    ( id)
    ( is-nonnegative-eq-ℤ (distributive-neg-diff-ℤ y x))
    ( decide-is-nonnegative-ℤ {y -ℤ x})

succ-leq-ℤ : (k : )  leq-ℤ k (succ-ℤ k)
succ-leq-ℤ k =
  is-nonnegative-eq-ℤ
    ( inv
      ( ( left-successor-law-add-ℤ k (neg-ℤ k)) 
        ( ap succ-ℤ (right-inverse-law-add-ℤ k))))
    ( star)

leq-ℤ-succ-leq-ℤ : (k l : )  leq-ℤ k l  leq-ℤ k (succ-ℤ l)
leq-ℤ-succ-leq-ℤ k l p = trans-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l)

concatenate-eq-leq-eq-ℤ :
  {x' x y y' : }  x'  x  leq-ℤ x y  y  y'  leq-ℤ x' y'
concatenate-eq-leq-eq-ℤ refl H refl = H

concatenate-leq-eq-ℤ :
  (x : ) {y y' : }  leq-ℤ x y  y  y'  leq-ℤ x y'
concatenate-leq-eq-ℤ x H refl = H

concatenate-eq-leq-ℤ :
  {x x' : } (y : )  x'  x  leq-ℤ x y  leq-ℤ x' y
concatenate-eq-leq-ℤ y refl H = H

The strict ordering on ℤ

le-ℤ-Prop :     Prop lzero
le-ℤ-Prop x y = is-positive-ℤ-Prop (x -ℤ y)

le-ℤ :     UU lzero
le-ℤ x y = type-Prop (le-ℤ-Prop x y)

is-prop-le-ℤ : (x y : )  is-prop (le-ℤ x y)
is-prop-le-ℤ x y = is-prop-type-Prop (le-ℤ-Prop x y)

ℤ is an ordered ring

preserves-order-add-ℤ' :
  {x y : } (z : )  leq-ℤ x y  leq-ℤ (x +ℤ z) (y +ℤ z)
preserves-order-add-ℤ' {x} {y} z =
  is-nonnegative-eq-ℤ (inv (right-translation-diff-ℤ y x z))

preserves-order-add-ℤ :
  {x y : } (z : )  leq-ℤ x y  leq-ℤ (z +ℤ x) (z +ℤ y)
preserves-order-add-ℤ {x} {y} z =
  is-nonnegative-eq-ℤ (inv (left-translation-diff-ℤ y x z))

preserves-leq-add-ℤ :
  {a b c d : }  leq-ℤ a b  leq-ℤ c d  leq-ℤ (a +ℤ c) (b +ℤ d)
preserves-leq-add-ℤ {a} {b} {c} {d} H K =
  trans-leq-ℤ
    ( a +ℤ c)
    ( b +ℤ c)
    ( b +ℤ d)
    ( preserves-order-add-ℤ' {a} {b} c H)
    ( preserves-order-add-ℤ b K)

reflects-order-add-ℤ' :
  {x y z : }  leq-ℤ (x +ℤ z) (y +ℤ z)  leq-ℤ x y
reflects-order-add-ℤ' {x} {y} {z} =
  is-nonnegative-eq-ℤ (right-translation-diff-ℤ y x z)

reflects-order-add-ℤ :
  {x y z : }  leq-ℤ (z +ℤ x) (z +ℤ y)  leq-ℤ x y
reflects-order-add-ℤ {x} {y} {z} =
  is-nonnegative-eq-ℤ (left-translation-diff-ℤ y x z)

Inclusion of ℕ into ℤ preserves order

leq-int-ℕ : (x y : )  leq-ℕ x y  leq-ℤ (int-ℕ x) (int-ℕ y)
leq-int-ℕ zero-ℕ y H =
  tr
    ( is-nonnegative-ℤ)
    ( inv (right-unit-law-add-ℤ (int-ℕ y)))
    ( is-nonnegative-int-ℕ y)
leq-int-ℕ (succ-ℕ x) (succ-ℕ y) H = tr (is-nonnegative-ℤ)
  ( inv (diff-succ-ℤ (int-ℕ y) (int-ℕ x)) 
    ( ap (_-ℤ (succ-ℤ (int-ℕ x))) (succ-int-ℕ y) 
      ap ((int-ℕ (succ-ℕ y)) -ℤ_) (succ-int-ℕ x)))
  (leq-int-ℕ x y H)