The opposite of a group
module group-theory.opposite-groups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups open import group-theory.isomorphisms-groups
Idea
The opposite of a group G
with multiplication μ
is a group with the same
underlying set as G
and multiplication given by x y ↦ μ y x
.
Definition
op-Group : {l : Level} → Group l → Group l pr1 (pr1 (op-Group G)) = set-Group G pr1 (pr2 (pr1 (op-Group G))) x y = mul-Group G y x pr2 (pr2 (pr1 (op-Group G))) x y z = inv (associative-mul-Group G z y x) pr1 (pr1 (pr2 (op-Group G))) = unit-Group G pr1 (pr2 (pr1 (pr2 (op-Group G)))) = right-unit-law-mul-Group G pr2 (pr2 (pr1 (pr2 (op-Group G)))) = left-unit-law-mul-Group G pr1 (pr2 (pr2 (op-Group G))) = inv-Group G pr1 (pr2 (pr2 (pr2 (op-Group G)))) = right-inverse-law-mul-Group G pr2 (pr2 (pr2 (pr2 (op-Group G)))) = left-inverse-law-mul-Group G
Properties
The opposite group of G
is isomorphic to G
module _ {l : Level} (G : Group l) where equiv-inv-Group : equiv-Group G (op-Group G) pr1 equiv-inv-Group = equiv-equiv-inv-Group G pr2 equiv-inv-Group = distributive-inv-mul-Group G iso-inv-Group : type-iso-Group G (op-Group G) iso-inv-Group = iso-equiv-Group G (op-Group G) equiv-inv-Group