Nilradical of a commutative ring
module commutative-algebra.nilradical-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.ideals-commutative-rings open import commutative-algebra.subsets-commutative-rings open import foundation.existential-quantification open import foundation.identity-types open import foundation.universe-levels open import ring-theory.nilpotent-elements-rings
Idea
The nilradical of a commutative ring is the ideal consisting of all nilpotent elements.
Definitions
subset-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → subset-Commutative-Ring l A subset-nilradical-Commutative-Ring A = is-nilpotent-element-ring-Prop (ring-Commutative-Ring A)
Properties
The nilradical contains zero
contains-zero-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → contains-zero-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) contains-zero-nilradical-Commutative-Ring A = intro-∃ 1 refl
The nilradical is closed under addition
is-closed-under-addition-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-closed-under-addition-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-addition-nilradical-Commutative-Ring A x y = is-nilpotent-add-Ring ( ring-Commutative-Ring A) ( x) ( y) ( commutative-mul-Commutative-Ring A x y)
The nilradical is closed under negatives
is-closed-under-negatives-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-closed-under-negatives-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-negatives-nilradical-Commutative-Ring A x = is-nilpotent-element-neg-Ring (ring-Commutative-Ring A) x
The nilradical is closed under multiplication with ring elements
module _ {l : Level} (A : Commutative-Ring l) where is-closed-under-right-multiplication-nilradical-Commutative-Ring : is-closed-under-right-multiplication-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-right-multiplication-nilradical-Commutative-Ring x y = is-nilpotent-element-mul-Ring ( ring-Commutative-Ring A) ( x) ( y) ( commutative-mul-Commutative-Ring A x y) is-closed-under-left-multiplication-nilradical-Commutative-Ring : is-closed-under-left-multiplication-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-left-multiplication-nilradical-Commutative-Ring x y = is-nilpotent-element-mul-Ring' ( ring-Commutative-Ring A) ( y) ( x) ( commutative-mul-Commutative-Ring A y x)
The nilradical ideal
nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → ideal-Commutative-Ring l A nilradical-Commutative-Ring A = ideal-right-ideal-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) ( contains-zero-nilradical-Commutative-Ring A) ( is-closed-under-addition-nilradical-Commutative-Ring A) ( is-closed-under-negatives-nilradical-Commutative-Ring A) ( is-closed-under-right-multiplication-nilradical-Commutative-Ring A)