Nilradical of a commutative ring

module commutative-algebra.nilradical-commutative-rings where
Imports
open import commutative-algebra.commutative-rings
open import commutative-algebra.ideals-commutative-rings
open import commutative-algebra.subsets-commutative-rings

open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.universe-levels

open import ring-theory.nilpotent-elements-rings

Idea

The nilradical of a commutative ring is the ideal consisting of all nilpotent elements.

Definitions

subset-nilradical-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l)  subset-Commutative-Ring l A
subset-nilradical-Commutative-Ring A =
  is-nilpotent-element-ring-Prop (ring-Commutative-Ring A)

Properties

The nilradical contains zero

contains-zero-nilradical-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l) 
  contains-zero-subset-Commutative-Ring A
    ( subset-nilradical-Commutative-Ring A)
contains-zero-nilradical-Commutative-Ring A = intro-∃ 1 refl

The nilradical is closed under addition

is-closed-under-addition-nilradical-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l) 
  is-closed-under-addition-subset-Commutative-Ring A
    ( subset-nilradical-Commutative-Ring A)
is-closed-under-addition-nilradical-Commutative-Ring A x y =
  is-nilpotent-add-Ring
    ( ring-Commutative-Ring A)
    ( x)
    ( y)
    ( commutative-mul-Commutative-Ring A x y)

The nilradical is closed under negatives

is-closed-under-negatives-nilradical-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l) 
  is-closed-under-negatives-subset-Commutative-Ring A
    ( subset-nilradical-Commutative-Ring A)
is-closed-under-negatives-nilradical-Commutative-Ring A x =
  is-nilpotent-element-neg-Ring (ring-Commutative-Ring A) x

The nilradical is closed under multiplication with ring elements

module _
  {l : Level} (A : Commutative-Ring l)
  where

  is-closed-under-right-multiplication-nilradical-Commutative-Ring :
    is-closed-under-right-multiplication-subset-Commutative-Ring A
      ( subset-nilradical-Commutative-Ring A)
  is-closed-under-right-multiplication-nilradical-Commutative-Ring x y =
    is-nilpotent-element-mul-Ring
      ( ring-Commutative-Ring A)
      ( x)
      ( y)
      ( commutative-mul-Commutative-Ring A x y)

  is-closed-under-left-multiplication-nilradical-Commutative-Ring :
    is-closed-under-left-multiplication-subset-Commutative-Ring A
      ( subset-nilradical-Commutative-Ring A)
  is-closed-under-left-multiplication-nilradical-Commutative-Ring x y =
    is-nilpotent-element-mul-Ring'
      ( ring-Commutative-Ring A)
      ( y)
      ( x)
      ( commutative-mul-Commutative-Ring A y x)

The nilradical ideal

nilradical-Commutative-Ring :
  {l : Level} (A : Commutative-Ring l)  ideal-Commutative-Ring l A
nilradical-Commutative-Ring A =
  ideal-right-ideal-Commutative-Ring A
    ( subset-nilradical-Commutative-Ring A)
    ( contains-zero-nilradical-Commutative-Ring A)
    ( is-closed-under-addition-nilradical-Commutative-Ring A)
    ( is-closed-under-negatives-nilradical-Commutative-Ring A)
    ( is-closed-under-right-multiplication-nilradical-Commutative-Ring A)