Prime numbers

module elementary-number-theory.prime-numbers where
Imports
open import elementary-number-theory.decidable-types
open import elementary-number-theory.divisibility-natural-numbers
open import elementary-number-theory.equality-natural-numbers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.proper-divisors-natural-numbers
open import elementary-number-theory.strict-inequality-natural-numbers

open import foundation.cartesian-product-types
open import foundation.contractible-types
open import foundation.coproduct-types
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.negation
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

Idea

A prime number is a natural number of which 1 is the only proper divisor.

Definition

The main definition of prime numbers

This is a direct interpretation of what it means to be prime.

is-prime-ℕ :   UU lzero
is-prime-ℕ n = (x : )  (is-proper-divisor-ℕ n x  is-one-ℕ x)

Prime-ℕ : UU lzero
Prime-ℕ = Σ  is-prime-ℕ

module _
  (p : Prime-ℕ)
  where

  nat-Prime-ℕ : 
  nat-Prime-ℕ = pr1 p

  is-prime-Prime-ℕ : is-prime-ℕ nat-Prime-ℕ
  is-prime-Prime-ℕ = pr2 p

Second definition of prime numbers

This is an implementation of the idea of being prime, which is usually taken as the definition.

is-one-is-proper-divisor-ℕ :   UU lzero
is-one-is-proper-divisor-ℕ n =
  (x : )  is-proper-divisor-ℕ n x  is-one-ℕ x

is-prime-easy-ℕ :   UU lzero
is-prime-easy-ℕ n = (is-not-one-ℕ n) × (is-one-is-proper-divisor-ℕ n)

Third definition of prime numbers

has-unique-proper-divisor-ℕ :   UU lzero
has-unique-proper-divisor-ℕ n = is-contr (Σ  (is-proper-divisor-ℕ n))

Properties

The number 0 is not a prime

is-nonzero-is-prime-ℕ :
  (n : )  is-prime-ℕ n  is-nonzero-ℕ n
is-nonzero-is-prime-ℕ n H p =
  is-not-one-two-ℕ
    ( pr1
      ( H 2)
      ( tr  n  ¬ (2  n)) (inv (p)) ( is-nonzero-two-ℕ),
        tr  n  div-ℕ 2 n) (inv p) (0 , refl)))

The number 1 is not a prime

is-not-one-is-prime-ℕ : (n : )  is-prime-ℕ n  is-not-one-ℕ n
is-not-one-is-prime-ℕ n H p = pr1 (pr2 (H 1) refl) (inv p)

A prime is strictly greater than 1

le-one-is-prime-ℕ :
  (n : )  is-prime-ℕ n  le-ℕ 1 n
le-one-is-prime-ℕ 0 x = ex-falso (is-nonzero-is-prime-ℕ 0 x refl)
le-one-is-prime-ℕ 1 x = ex-falso (is-not-one-is-prime-ℕ 1 x refl)
le-one-is-prime-ℕ (succ-ℕ (succ-ℕ n)) x = star

Being a prime is a proposition

is-prop-is-prime-ℕ :
  (n : )  is-prop (is-prime-ℕ n)
is-prop-is-prime-ℕ n =
  is-prop-Π
    ( λ x 
      is-prop-prod
        ( is-prop-Π  p  is-set-ℕ x 1))
        ( is-prop-Π  p  is-prop-is-proper-divisor-ℕ n x)))

is-prime-ℕ-Prop :
  (n : )  Prop lzero
pr1 (is-prime-ℕ-Prop n) = is-prime-ℕ n
pr2 (is-prime-ℕ-Prop n) = is-prop-is-prime-ℕ n

is-prop-has-unique-proper-divisor-ℕ :
  (n : )  is-prop (has-unique-proper-divisor-ℕ n)
is-prop-has-unique-proper-divisor-ℕ n = is-property-is-contr

The three definitions of primes are equivalent

is-prime-easy-is-prime-ℕ : (n : )  is-prime-ℕ n  is-prime-easy-ℕ n
pr1 (is-prime-easy-is-prime-ℕ n H) = is-not-one-is-prime-ℕ n H
pr2 (is-prime-easy-is-prime-ℕ n H) x = pr1 (H x)

is-prime-is-prime-easy-ℕ : (n : )  is-prime-easy-ℕ n  is-prime-ℕ n
pr1 (is-prime-is-prime-easy-ℕ n H x) = pr2 H x
pr1 (pr2 (is-prime-is-prime-easy-ℕ n H .(succ-ℕ zero-ℕ)) refl) q = pr1 H (inv q)
pr2 (pr2 (is-prime-is-prime-easy-ℕ n H .(succ-ℕ zero-ℕ)) refl) = div-one-ℕ n

has-unique-proper-divisor-is-prime-ℕ :
  (n : )  is-prime-ℕ n  has-unique-proper-divisor-ℕ n
has-unique-proper-divisor-is-prime-ℕ n H =
  fundamental-theorem-id'
    ( λ x p  pr2 (H x) (inv p))
    ( λ x 
      is-equiv-is-prop
        ( is-set-ℕ 1 x)
        ( is-prop-is-proper-divisor-ℕ n x)
        ( λ p  inv (pr1 (H x) p)))

is-prime-has-unique-proper-divisor-ℕ :
  (n : )  has-unique-proper-divisor-ℕ n  is-prime-ℕ n
pr1 (is-prime-has-unique-proper-divisor-ℕ n H x) K =
  ap pr1
    ( eq-is-contr H
      { pair x K}
      { pair 1 (is-proper-divisor-one-is-proper-divisor-ℕ K)})
pr2 (is-prime-has-unique-proper-divisor-ℕ n H .1) refl =
  is-proper-divisor-one-is-proper-divisor-ℕ (pr2 (center H))

Being a prime is decidable

is-decidable-is-prime-easy-ℕ : (n : )  is-decidable (is-prime-easy-ℕ n)
is-decidable-is-prime-easy-ℕ zero-ℕ =
  inr
    ( λ H 
      is-not-one-two-ℕ (pr2 H 2 (is-proper-divisor-zero-succ-ℕ 1)))
is-decidable-is-prime-easy-ℕ (succ-ℕ n) =
  is-decidable-prod
    ( is-decidable-neg (is-decidable-is-one-ℕ (succ-ℕ n)))
    ( is-decidable-bounded-Π-ℕ
      ( is-proper-divisor-ℕ (succ-ℕ n))
      ( is-one-ℕ)
      ( is-decidable-is-proper-divisor-ℕ (succ-ℕ n))
      ( is-decidable-is-one-ℕ)
      ( succ-ℕ n)
      ( λ x H  leq-div-succ-ℕ x n (pr2 H)))

is-decidable-is-prime-ℕ : (n : )  is-decidable (is-prime-ℕ n)
is-decidable-is-prime-ℕ n =
  is-decidable-iff
    ( is-prime-is-prime-easy-ℕ n)
    ( is-prime-easy-is-prime-ℕ n)
    ( is-decidable-is-prime-easy-ℕ n)

The number 2 is a prime

is-one-is-proper-divisor-two-ℕ : is-one-is-proper-divisor-ℕ 2
is-one-is-proper-divisor-two-ℕ zero-ℕ (pair f (pair k p)) =
  ex-falso (f (inv (right-zero-law-mul-ℕ k)  p))
is-one-is-proper-divisor-two-ℕ (succ-ℕ zero-ℕ) (pair f H) = refl
is-one-is-proper-divisor-two-ℕ (succ-ℕ (succ-ℕ zero-ℕ)) (pair f H) =
  ex-falso (f refl)
is-one-is-proper-divisor-two-ℕ (succ-ℕ (succ-ℕ (succ-ℕ x))) (pair f H) =
  ex-falso (leq-div-succ-ℕ (succ-ℕ (succ-ℕ (succ-ℕ x))) 1 H)

is-prime-easy-two-ℕ : is-prime-easy-ℕ 2
pr1 is-prime-easy-two-ℕ = Eq-eq-ℕ
pr2 is-prime-easy-two-ℕ = is-one-is-proper-divisor-two-ℕ

is-prime-two-ℕ : is-prime-ℕ 2
is-prime-two-ℕ =
  is-prime-is-prime-easy-ℕ 2 is-prime-easy-two-ℕ

If a prime number p divides a nonzero number x, then x/p < x

le-quotient-div-is-prime-ℕ :
  (p x : )  is-nonzero-ℕ x  is-prime-ℕ p 
  (H : div-ℕ p x)  le-ℕ (quotient-div-ℕ p x H) x
le-quotient-div-is-prime-ℕ p x N P H =
  le-quotient-div-ℕ p x N H (is-not-one-is-prime-ℕ p P)

If a prime number p divides a number x + 1, then (x + 1)/p ≤ x

leq-quotient-div-is-prime-ℕ :
  (p x : )  is-prime-ℕ p 
  (H : div-ℕ p (succ-ℕ x))  leq-ℕ (quotient-div-ℕ p (succ-ℕ x) H) x
leq-quotient-div-is-prime-ℕ p x P H =
  leq-le-succ-ℕ
    ( quotient-div-ℕ p (succ-ℕ x) H)
    ( x)
    ( le-quotient-div-is-prime-ℕ p (succ-ℕ x) (is-nonzero-succ-ℕ x) P H)

See also

  • The fundamental theorem of arithmetic asserts that every positive natural number can be written uniquely as a product of primes. This theorem is proven in fundamental-theorem-of-arithmetic.