Exponential of Cauchy series of species of types in subuniverses
module species.exponentials-cauchy-series-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-dependent-pair-types open import foundation.subuniverses open import foundation.type-arithmetic-cartesian-product-types open import foundation.unit-type open import foundation.universe-levels open import species.cauchy-composition-species-of-types-in-subuniverses open import species.cauchy-exponentials-species-of-types-in-subuniverses open import species.cauchy-series-species-of-types-in-subuniverses open import species.composition-cauchy-series-species-of-types-in-subuniverses open import species.species-of-types-in-subuniverses
Definition
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (S : species-subuniverse P Q) (X : UU l5) where exponential-cauchy-series-species-subuniverse : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l5) exponential-cauchy-series-species-subuniverse = Σ ( type-subuniverse P) ( λ F → inclusion-subuniverse P F → Σ ( type-subuniverse P) ( λ U → ( inclusion-subuniverse Q (S U)) × ( inclusion-subuniverse P U → X)))
Property
The exponential of a Cauchy series as a composition
module _ {l1 l2 l3 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (X : UU l5) where equiv-exponential-cauchy-series-composition-unit-species-subuniverse : composition-cauchy-series-species-subuniverse P Q (λ _ → unit , C) S X ≃ exponential-cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( X) equiv-exponential-cauchy-series-composition-unit-species-subuniverse = equiv-tot (λ F → left-unit-law-prod-is-contr is-contr-unit)
The Cauchy series associated to the Cauchy exponential of S
is equal to the exponential of its Cauchy series
module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C1 : ( {l4 : Level} (S : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : type-subuniverse P) → is-in-subuniverse ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l4)) ( cauchy-exponential-species-subuniverse' P Q S X))) (C2 : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit) (C3 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C4 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (X : UU l4) where equiv-cauchy-series-cauchy-exponential-species-subuniverse : cauchy-series-species-subuniverse P ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3)) ( cauchy-exponential-species-subuniverse P Q C1 S) ( X) ≃ exponential-cauchy-series-species-subuniverse P ( subuniverse-global-subuniverse Q l3) ( S) ( X) equiv-cauchy-series-cauchy-exponential-species-subuniverse = ( equiv-exponential-cauchy-series-composition-unit-species-subuniverse ( P) ( Q) ( C2) ( S) ( X)) ∘e ( ( equiv-cauchy-series-composition-species-subuniverse P Q C3 C4 ( λ _ → unit , C2) ( S) ( X)) ∘e ( equiv-cauchy-series-equiv-species-subuniverse P Q ( cauchy-exponential-species-subuniverse P Q C1 S) ( cauchy-composition-species-subuniverse P Q C3 C4 ( λ _ → unit , C2) ( S)) ( λ F → inv-equiv ( equiv-cauchy-exponential-composition-unit-species-subuniverse ( P) ( Q) ( C1) ( C2) ( C3) ( C4) ( S) ( F))) ( X)))