Exponential of Cauchy series of species of types in subuniverses

module species.exponentials-cauchy-series-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functions
open import foundation.functoriality-dependent-pair-types
open import foundation.subuniverses
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.unit-type
open import foundation.universe-levels

open import species.cauchy-composition-species-of-types-in-subuniverses
open import species.cauchy-exponentials-species-of-types-in-subuniverses
open import species.cauchy-series-species-of-types-in-subuniverses
open import species.composition-cauchy-series-species-of-types-in-subuniverses
open import species.species-of-types-in-subuniverses

Definition

module _
  {l1 l2 l3 l4 l5 : Level}
  (P : subuniverse l1 l2)
  (Q : subuniverse l3 l4)
  (S : species-subuniverse P Q)
  (X : UU l5)
  where

  exponential-cauchy-series-species-subuniverse :
    UU (lsuc l1  l2  l3  l5)
  exponential-cauchy-series-species-subuniverse =
    Σ ( type-subuniverse P)
      ( λ F 
        inclusion-subuniverse P F 
        Σ ( type-subuniverse P)
          ( λ U 
            ( inclusion-subuniverse Q (S U)) ×
            ( inclusion-subuniverse P U  X)))

Property

The exponential of a Cauchy series as a composition

module _
  {l1 l2 l3 l5 : Level}
  (P : subuniverse l1 l2)
  (Q : global-subuniverse id)
  (C : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (X : UU l5)
  where

  equiv-exponential-cauchy-series-composition-unit-species-subuniverse :
    composition-cauchy-series-species-subuniverse P Q  _  unit , C) S X 
    exponential-cauchy-series-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q l3)
      ( S)
      ( X)
  equiv-exponential-cauchy-series-composition-unit-species-subuniverse =
    equiv-tot  F  left-unit-law-prod-is-contr is-contr-unit)

The Cauchy series associated to the Cauchy exponential of S is equal to the exponential of its Cauchy series

module _
  {l1 l2 l3 l4 : Level}
  (P : subuniverse l1 l2)
  (Q : global-subuniverse id)
  (C1 :
    ( {l4 : Level}
    (S : species-subuniverse P (subuniverse-global-subuniverse Q l4))
    (X : type-subuniverse P) 
      is-in-subuniverse
        ( subuniverse-global-subuniverse Q (lsuc l1  l2  l4))
        ( cauchy-exponential-species-subuniverse' P Q S X)))
  (C2 : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit)
  (C3 : is-closed-under-cauchy-composition-species-subuniverse P Q)
  (C4 : is-closed-under-Σ-subuniverse P)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (X : UU l4)
  where

  equiv-cauchy-series-cauchy-exponential-species-subuniverse :
    cauchy-series-species-subuniverse P
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3))
      ( cauchy-exponential-species-subuniverse P Q C1 S)
      ( X) 
    exponential-cauchy-series-species-subuniverse P
      ( subuniverse-global-subuniverse Q l3)
      ( S)
      ( X)
  equiv-cauchy-series-cauchy-exponential-species-subuniverse =
    ( equiv-exponential-cauchy-series-composition-unit-species-subuniverse
      ( P)
      ( Q)
      ( C2)
      ( S)
      ( X)) ∘e
    ( ( equiv-cauchy-series-composition-species-subuniverse P Q C3 C4
        ( λ _  unit , C2)
        ( S)
        ( X)) ∘e
      ( equiv-cauchy-series-equiv-species-subuniverse P Q
        ( cauchy-exponential-species-subuniverse P Q C1 S)
        ( cauchy-composition-species-subuniverse P Q C3 C4
          ( λ _  unit , C2)
          ( S))
        ( λ F 
          inv-equiv
            ( equiv-cauchy-exponential-composition-unit-species-subuniverse
              ( P)
              ( Q)
              ( C1)
              ( C2)
              ( C3)
              ( C4)
              ( S)
              ( F)))
        ( X)))