Locally finite posets
module order-theory.locally-finite-posets where
Imports
open import foundation.propositions open import foundation.universe-levels open import order-theory.finite-posets open import order-theory.interval-subposets open import order-theory.posets
Idea
A poset X
is said to be locally finite if for every x, y ∈ X
, the
interval subposet [x, y]
consisting of
z : X
such that x ≤ z ≤ y
, is finite.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) where is-locally-finite-Poset-Prop : Prop (l1 ⊔ l2) is-locally-finite-Poset-Prop = Π-Prop ( type-Poset X) ( λ x → Π-Prop ( type-Poset X) ( λ y → is-finite-Poset-Prop (poset-interval-Subposet X x y))) is-locally-finite-Poset : UU (l1 ⊔ l2) is-locally-finite-Poset = type-Prop is-locally-finite-Poset-Prop is-prop-is-locally-finite-Poset : is-prop is-locally-finite-Poset is-prop-is-locally-finite-Poset = is-prop-type-Prop is-locally-finite-Poset-Prop