The orbit-stabilizer theorem for concrete groups
module group-theory.orbit-stabilizer-theorem-concrete-groups where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import group-theory.mere-equivalences-concrete-group-actions open import group-theory.stabilizer-groups-concrete-group-actions open import structured-types.pointed-types
Idea
The orbit stabilizer theorem for concrete groups asserts that the type
Orbit(x)
of orbits of an element x : X *
is deloopable and fits in a fiber
sequence
BG_x ----> BG ----> B(Orbit(x))
To see that this is indeed a formulation of the orbit-stabilizer theorem, note
that the delooping of Orbit(x)
gives Orbit(x)
the structure of a group.
Furthermore, this fiber sequence induces a short exact sequence
G_x ----> G ----> Orbit(x),
which induces a bijection from the cosets of the stabilizer subgroup G_x
of
G
to the type Orbit(x)
.
Definitions
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where classifying-type-quotient-stabilizer-action-Concrete-Group : type-action-Concrete-Group G X → UU (lsuc l1 ⊔ lsuc l2) classifying-type-quotient-stabilizer-action-Concrete-Group x = Σ ( action-Concrete-Group (l1 ⊔ l2) G) ( mere-equiv-action-Concrete-Group G ( action-stabilizer-action-Concrete-Group G X x)) point-classifying-type-quotient-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → classifying-type-quotient-stabilizer-action-Concrete-Group x pr1 (point-classifying-type-quotient-stabilizer-action-Concrete-Group x) = action-stabilizer-action-Concrete-Group G X x pr2 (point-classifying-type-quotient-stabilizer-action-Concrete-Group x) = refl-mere-equiv-action-Concrete-Group G (action-stabilizer-action-Concrete-Group G X x) classifying-pointed-type-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → Pointed-Type (lsuc l1 ⊔ lsuc l2) pr1 (classifying-pointed-type-stabilizer-action-Concrete-Group x) = classifying-type-quotient-stabilizer-action-Concrete-Group x pr2 (classifying-pointed-type-stabilizer-action-Concrete-Group x) = point-classifying-type-quotient-stabilizer-action-Concrete-Group x