Ramsey theory
module univalent-combinatorics.ramsey-theory where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
coloring : {l : Level} (k : ℕ) → UU l → UU l coloring k X = X → Fin k full-subset : {l : Level} (X : UU l) → X → Prop lzero full-subset X x = unit-Prop subset-of-size : {l : Level} (k : ℕ) → 𝔽 l → UU (lsuc lzero ⊔ l) subset-of-size k X = Σ ( type-𝔽 X → Prop lzero) ( λ P → has-cardinality k (Σ (type-𝔽 X) (λ x → type-Prop (P x)))) is-ramsey-set : {l : Level} {k : ℕ} (q : Fin k → ℕ) (r : ℕ) (A : 𝔽 l) → UU (lsuc lzero ⊔ l) is-ramsey-set {l} {k} q r A = (c : coloring k (subset-of-size r A)) → Σ ( Fin k) ( λ i → Σ ( subset-of-size (q i) A) ( λ P → (Q : subset-of-size r A) → ((x : type-𝔽 A) → type-Prop ((pr1 Q) x) → type-Prop ((pr1 P) x)) → Id (c Q) i)) {- is-ramsey-set-empty-coloring : (r : ℕ) → is-ramsey-set ex-falso r empty-𝔽 is-ramsey-set-empty-coloring zero-ℕ c = {!!} is-ramsey-set-empty-coloring (succ-ℕ r) c = {!!} is-ramsey-set-Fin-r : {k : ℕ} (q : Fin k → ℕ) (r : ℕ) → fib q r → is-ramsey-set q r (Fin-𝔽 r) is-ramsey-set-Fin-r q .(q i) (pair i refl) c = pair ( c R) ( pair {!!} {!!}) where R : subset-of-size (q i) (Fin-𝔽 (q i)) R = pair ( full-subset (Fin (q i))) ( unit-trunc-Prop (inv-equiv right-unit-law-prod)) {- ( pair ( pair ( full-subset (Fin {!!})) ( unit-trunc-Prop (inv-equiv right-unit-law-prod))) ( λ Q H → {!!})) -} -}