Unordered tuples of elements in commutative monoids
module group-theory.unordered-tuples-of-elements-commutative-monoids where
Imports
open import elementary-number-theory.natural-numbers open import foundation.universe-levels open import foundation.unordered-tuples open import group-theory.commutative-monoids
Definition
unordered-tuple-Commutative-Monoid : {l : Level} (n : ℕ) (M : Commutative-Monoid l) → UU (lsuc lzero ⊔ l) unordered-tuple-Commutative-Monoid n M = unordered-tuple n (type-Commutative-Monoid M) module _ {l : Level} {n : ℕ} (M : Commutative-Monoid l) (x : unordered-tuple-Commutative-Monoid n M) where type-unordered-tuple-Commutative-Monoid : UU lzero type-unordered-tuple-Commutative-Monoid = type-unordered-tuple n x element-unordered-tuple-Commutative-Monoid : type-unordered-tuple-Commutative-Monoid → type-Commutative-Monoid M element-unordered-tuple-Commutative-Monoid = element-unordered-tuple n x