Powers of integers
module elementary-number-theory.powers-integers where
Imports
open import commutative-algebra.powers-of-elements-commutative-rings open import elementary-number-theory.commutative-ring-of-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.natural-numbers open import foundation.identity-types
Idea
The power operation on the integers is the map n x ↦ xⁿ
, which is defined by
iteratively multiplying x
with itself n
times.
Definition
power-ℤ : ℕ → ℤ → ℤ power-ℤ = power-Commutative-Ring ℤ-Commutative-Ring
Properties
xⁿ⁺¹ = xⁿx
power-succ-ℤ : (n : ℕ) (x : ℤ) → power-ℤ (succ-ℕ n) x = (power-ℤ n x) *ℤ x power-succ-ℤ = power-succ-Commutative-Ring ℤ-Commutative-Ring