The binomial theorem for rings
module ring-theory.binomial-theorem-rings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.binomial-coefficients open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.vectors-on-rings open import ring-theory.binomial-theorem-semirings open import ring-theory.powers-of-elements-rings open import ring-theory.rings open import ring-theory.sums-rings open import univalent-combinatorics.standard-finite-types
Idea
The binomial theorem for rings asserts that for any two elements x
and y
of
a commutative ring R
and any natural number n
, if xy = yx
holds then we
have
(x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ.
Definitions
Binomial sums
binomial-sum-Ring : {l : Level} (R : Ring l) (n : ℕ) (f : functional-vec-Ring R (succ-ℕ n)) → type-Ring R binomial-sum-Ring R = binomial-sum-Semiring (semiring-Ring R)
Properties
Binomial sums of one and two elements
module _ {l : Level} (R : Ring l) where binomial-sum-one-element-Ring : (f : functional-vec-Ring R 1) → binomial-sum-Ring R 0 f = head-functional-vec-Ring R 0 f binomial-sum-one-element-Ring = binomial-sum-one-element-Semiring (semiring-Ring R) binomial-sum-two-elements-Ring : (f : functional-vec-Ring R 2) → binomial-sum-Ring R 1 f = add-Ring R (f (zero-Fin 1)) (f (one-Fin 1)) binomial-sum-two-elements-Ring = binomial-sum-two-elements-Semiring (semiring-Ring R)
Binomial sums are homotopy invariant
module _ {l : Level} (R : Ring l) where htpy-binomial-sum-Ring : (n : ℕ) {f g : functional-vec-Ring R (succ-ℕ n)} → (f ~ g) → binomial-sum-Ring R n f = binomial-sum-Ring R n g htpy-binomial-sum-Ring = htpy-binomial-sum-Semiring (semiring-Ring R)
Multiplication distributes over sums
module _ {l : Level} (R : Ring l) where left-distributive-mul-binomial-sum-Ring : (n : ℕ) (x : type-Ring R) (f : functional-vec-Ring R (succ-ℕ n)) → mul-Ring R x (binomial-sum-Ring R n f) = binomial-sum-Ring R n (λ i → mul-Ring R x (f i)) left-distributive-mul-binomial-sum-Ring = left-distributive-mul-binomial-sum-Semiring (semiring-Ring R) right-distributive-mul-binomial-sum-Ring : (n : ℕ) (f : functional-vec-Ring R (succ-ℕ n)) (x : type-Ring R) → mul-Ring R (binomial-sum-Ring R n f) x = binomial-sum-Ring R n (λ i → mul-Ring R (f i) x) right-distributive-mul-binomial-sum-Ring = right-distributive-mul-binomial-sum-Semiring (semiring-Ring R)
Theorem
Binomial theorem for rings
binomial-theorem-Ring : {l : Level} (R : Ring l) (n : ℕ) (x y : type-Ring R) → mul-Ring R x y = mul-Ring R y x → power-Ring R n (add-Ring R x y) = binomial-sum-Ring R n ( λ i → mul-Ring R ( power-Ring R (nat-Fin (succ-ℕ n) i) x) ( power-Ring R (dist-ℕ (nat-Fin (succ-ℕ n) i) n) y)) binomial-theorem-Ring R = binomial-theorem-Semiring (semiring-Ring R)
Corollaries
If x
commutes with y
, then we can compute (x+y)ⁿ⁺ᵐ
as a linear combination of xⁿ
and yᵐ
is-linear-combination-power-add-Ring : {l : Level} (R : Ring l) (n m : ℕ) (x y : type-Ring R) → mul-Ring R x y = mul-Ring R y x → power-Ring R (n +ℕ m) (add-Ring R x y) = add-Ring R ( mul-Ring R ( power-Ring R m y) ( sum-Ring R n ( λ i → mul-nat-scalar-Ring R ( binomial-coefficient-ℕ (n +ℕ m) (nat-Fin n i)) ( mul-Ring R ( power-Ring R (nat-Fin n i) x) ( power-Ring R (dist-ℕ (nat-Fin n i) n) y))))) ( mul-Ring R ( power-Ring R n x) ( sum-Ring R ( succ-ℕ m) ( λ i → mul-nat-scalar-Ring R ( binomial-coefficient-ℕ ( n +ℕ m) ( n +ℕ (nat-Fin (succ-ℕ m) i))) ( mul-Ring R ( power-Ring R (nat-Fin (succ-ℕ m) i) x) ( power-Ring R (dist-ℕ (nat-Fin (succ-ℕ m) i) m) y))))) is-linear-combination-power-add-Ring R = is-linear-combination-power-add-Semiring (semiring-Ring R)