Products in precategories
module category-theory.products-precategories where
Imports
open import category-theory.precategories open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.unique-existence open import foundation.universe-levels
Idea
A product of two objects x
and x
in a category C
consists of:
- an object
p
- morphisms
l : hom p x
andr : hom p y
such that for every objectz
and morphismsf : hom z x
andg : hom z y
there exists a unique morphismh : hom z p
such that l ∘ h = f
r ∘ h = g
.
We say that C
has all binary products if there is a choice of a product for
each pair of objects in C
.
Definition
module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-product-Precategory : (x y p : obj-Precategory C) → type-hom-Precategory C p x → type-hom-Precategory C p y → UU (l1 ⊔ l2) is-product-Precategory x y p l r = (z : obj-Precategory C) (f : type-hom-Precategory C z x) → (g : type-hom-Precategory C z y) → (∃! (type-hom-Precategory C z p) λ h → (comp-hom-Precategory C l h = f) × (comp-hom-Precategory C r h = g)) product-Precategory : obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) product-Precategory x y = Σ (obj-Precategory C) λ p → Σ (type-hom-Precategory C p x) λ l → Σ (type-hom-Precategory C p y) λ r → is-product-Precategory x y p l r has-all-binary-products-Precategory : UU (l1 ⊔ l2) has-all-binary-products-Precategory = (x y : obj-Precategory C) → product-Precategory x y module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-products-Precategory C) where object-product-Precategory : obj-Precategory C → obj-Precategory C → obj-Precategory C object-product-Precategory x y = pr1 (t x y) pr1-product-Precategory : (x y : obj-Precategory C) → type-hom-Precategory C (object-product-Precategory x y) x pr1-product-Precategory x y = pr1 (pr2 (t x y)) pr2-product-Precategory : (x y : obj-Precategory C) → type-hom-Precategory C (object-product-Precategory x y) y pr2-product-Precategory x y = pr1 (pr2 (pr2 (t x y))) module _ (x y z : obj-Precategory C) (f : type-hom-Precategory C z x) (g : type-hom-Precategory C z y) where morphism-into-product-Precategory : type-hom-Precategory C z (object-product-Precategory x y) morphism-into-product-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g)) morphism-into-product-Precategory-comm-pr1 : comp-hom-Precategory C ( pr1-product-Precategory x y) ( morphism-into-product-Precategory) = f morphism-into-product-Precategory-comm-pr1 = pr1 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) morphism-into-product-Precategory-comm-pr2 : comp-hom-Precategory C ( pr2-product-Precategory x y) ( morphism-into-product-Precategory) = g morphism-into-product-Precategory-comm-pr2 = pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) is-unique-morphism-into-product-Precategory : (h : type-hom-Precategory C z (object-product-Precategory x y)) → comp-hom-Precategory C (pr1-product-Precategory x y) h = f → comp-hom-Precategory C (pr2-product-Precategory x y) h = g → morphism-into-product-Precategory = h is-unique-morphism-into-product-Precategory h comm1 comm2 = ap pr1 ((pr2 (pr2 (pr2 (pr2 (t x y))) z f g)) (h , (comm1 , comm2))) module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y p : obj-Precategory C) (l : type-hom-Precategory C p x) (r : type-hom-Precategory C p y) where is-prop-is-product-Precategory : is-prop (is-product-Precategory C x y p l r) is-prop-is-product-Precategory = is-prop-Π (λ z → is-prop-Π (λ f → is-prop-Π (λ g → is-property-is-contr))) is-product-Precategory-Prop : Prop (l1 ⊔ l2) pr1 is-product-Precategory-Prop = is-product-Precategory C x y p l r pr2 is-product-Precategory-Prop = is-prop-is-product-Precategory
Properties
Products of morphisms
If C
has all binary products then for any pair of morphisms f : hom x₁ y₁
and g : hom x₂ y₂
we can construct a morphism
f × g : hom (x₁ × x₂) (y₁ × y₂)
.
module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-products-Precategory C) {x₁ x₂ y₁ y₂ : obj-Precategory C} (f : type-hom-Precategory C x₁ y₁) (g : type-hom-Precategory C x₂ y₂) where map-product-Precategory : type-hom-Precategory C (object-product-Precategory C t x₁ x₂) (object-product-Precategory C t y₁ y₂) map-product-Precategory = morphism-into-product-Precategory C t _ _ _ (comp-hom-Precategory C f (pr1-product-Precategory C t x₁ x₂)) (comp-hom-Precategory C g (pr2-product-Precategory C t x₁ x₂))