Surjective maps between finite types
module univalent-combinatorics.surjective-maps where
Imports
open import foundation.surjective-maps public open import elementary-number-theory.natural-numbers open import foundation.cartesian-product-types open import foundation.decidable-embeddings open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import univalent-combinatorics.counting open import univalent-combinatorics.counting-decidable-subtypes open import univalent-combinatorics.counting-dependent-pair-types open import univalent-combinatorics.decidable-dependent-function-types open import univalent-combinatorics.embeddings open import univalent-combinatorics.fibers-of-maps open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Definition
Surjection-𝔽 : {l1 : Level} (l2 : Level) → 𝔽 l1 → UU (l1 ⊔ lsuc l2) Surjection-𝔽 l2 A = Σ (𝔽 l2) (λ B → (type-𝔽 A) ↠ (type-𝔽 B))
Properties
is-decidable-is-surjective-is-finite : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-finite A → is-finite B → is-decidable (is-surjective f) is-decidable-is-surjective-is-finite f HA HB = is-decidable-Π-is-finite HB ( λ y → is-decidable-type-trunc-Prop-is-finite (is-finite-fib f HA HB y))
If X
has decidable equality and there exist a surjection Fin-n ↠ X
then X
has a counting
module _ {l1 : Level} {X : UU l1} where count-surjection-has-decidable-equality : (n : ℕ) → (has-decidable-equality X) → (Fin n ↠ X) → count (X) count-surjection-has-decidable-equality n dec-X f = count-decidable-emb ( ( map-equiv ( equiv-precomp-decidable-emb-equiv ( inv-equiv ( right-unit-law-Σ-is-contr ( λ x → is-proof-irrelevant-is-prop ( is-prop-type-trunc-Prop) ( is-surjective-map-surjection f x)))) (Σ _ (fib (pr1 f)))) ( decidable-emb-tot-trunc-Prop-count { P = fib (map-surjection f)} ( count-fiber-count-Σ dec-X ( count-equiv ( inv-equiv-total-fib (map-surjection f)) (count-Fin n)))))) ( count-equiv (inv-equiv-total-fib (map-surjection f)) (count-Fin n))
A type X
is finite if and only if it has decidable equality and there exists a surjection from a finite type to X
is-finite-if-∃-surjection-has-decidable-equality : is-finite X → ( has-decidable-equality X × type-trunc-Prop (Σ ℕ (λ n → Fin n ↠ X))) is-finite-if-∃-surjection-has-decidable-equality fin-X = apply-universal-property-trunc-Prop ( fin-X) ( prod-Prop (has-decidable-equality-Prop X) (trunc-Prop _)) ( λ count-X → ( has-decidable-equality-count count-X , unit-trunc-Prop ( pr1 count-X , ( map-equiv (pr2 count-X)) , ( is-surjective-map-equiv (pr2 count-X))))) ∃-surjection-has-decidable-equality-if-is-finite : ( has-decidable-equality X × type-trunc-Prop (Σ ℕ (λ n → Fin n ↠ X))) → is-finite X ∃-surjection-has-decidable-equality-if-is-finite dec-X-surj = apply-universal-property-trunc-Prop ( pr2 dec-X-surj) ( is-finite-Prop X) ( λ n-surj → unit-trunc-Prop ( count-surjection-has-decidable-equality ( pr1 n-surj) ( pr1 dec-X-surj) ( pr2 n-surj))) is-finite-iff-∃-surjection-has-decidable-equality : is-finite X ≃ ( has-decidable-equality X × type-trunc-Prop (Σ ℕ (λ n → Fin n ↠ X))) is-finite-iff-∃-surjection-has-decidable-equality = equiv-prop ( is-prop-is-finite X) ( is-prop-prod is-prop-has-decidable-equality is-prop-type-trunc-Prop) ( λ fin-X → is-finite-if-∃-surjection-has-decidable-equality fin-X) ( λ dec-X-surj → ∃-surjection-has-decidable-equality-if-is-finite dec-X-surj)