Natural isomorphisms between functors between categories
module category-theory.natural-isomorphisms-categories where
Imports
open import category-theory.categories open import category-theory.functors-categories open import category-theory.natural-isomorphisms-precategories open import category-theory.natural-transformations-categories open import foundation.universe-levels
Idea
A natural isomorphism between functors on categories is a natural isomorphism between the functors on the underlying precategories.
Definition
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where is-natural-isomorphism-Category : natural-transformation-Category C D F G → UU (l1 ⊔ l4) is-natural-isomorphism-Category = is-natural-isomorphism-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) natural-isomorphism-Category : UU (l1 ⊔ l2 ⊔ l4) natural-isomorphism-Category = natural-isomorphism-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G)