Hexagons of identifications
module foundation.hexagons-of-identifications where
Idea
A hexagon of identifications is an identification
((α ∙ β) ∙ γ) = (δ ∙ (ε ∙ ζ))
.
Definition
Hexagons of identifications
coherence-hexagon : {l : Level} {A : UU l} {x u u' v v' y : A} (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → UU l coherence-hexagon α β γ δ ε ζ = ((α ∙ β) ∙ γ) = (δ ∙ (ε ∙ ζ))
Symmetries of hexagons of identifications
module _ {l : Level} {A : UU l} {x u u' v v' y : A} where hexagon-rotate-120 : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv ε) (inv δ) α ζ (inv γ) (inv β) hexagon-rotate-120 refl refl refl refl refl .refl refl = refl hexagon-rotate-240 : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon γ (inv ζ) (inv ε) (inv β) (inv α) δ hexagon-rotate-240 refl refl refl refl refl .refl refl = refl hexagon-mirror-A : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon ε ζ (inv γ) (inv δ) α β hexagon-mirror-A refl refl refl refl refl .refl refl = refl hexagon-mirror-B : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv α) δ ε β γ (inv ζ) hexagon-mirror-B refl refl refl refl refl .refl refl = refl hexagon-mirror-C : (α : x = u) (β : u = u') (γ : u' = y) (δ : x = v) (ε : v = v') (ζ : v' = y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv γ) (inv β) (inv α) (inv ζ) (inv ε) (inv δ) hexagon-mirror-C refl refl refl refl refl .refl refl = refl