Multivariable decidable relations
module foundation.multivariable-decidable-relations where
Imports
open import elementary-number-theory.natural-numbers open import foundation.decidable-subtypes open import foundation.multivariable-correspondences open import foundation.multivariable-relations open import foundation-core.universe-levels open import univalent-combinatorics.standard-finite-types
Idea
Consider a family of types A i
indexed by i : Fin n
. An n
-ary decidable
relation on the tuples of elements of the A i
is a decidable subtype of the
product of the A i
.
Definition
multivariable-decidable-relation : {l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2) multivariable-decidable-relation l2 n A = decidable-subtype l2 ((i : Fin n) → A i) module _ {l1 l2 : Level} {n : ℕ} {A : Fin n → UU l1} (R : multivariable-decidable-relation l2 n A) where multivariable-relation-multivariable-decidable-relation : multivariable-relation l2 n A multivariable-relation-multivariable-decidable-relation = subtype-decidable-subtype R multivariable-correspondence-multivariable-decidable-relation : multivariable-correspondence l2 n A multivariable-correspondence-multivariable-decidable-relation = is-in-decidable-subtype R