The universal property of set truncations
module foundation.universal-property-set-truncation where
Imports
open import foundation.equivalences open import foundation.function-extensionality open import foundation.mere-equality open import foundation.reflecting-maps-equivalence-relations open import foundation.sets open import foundation.type-theoretic-principle-of-choice open import foundation.universal-property-set-quotients open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.functions open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.type-arithmetic-dependent-pair-types open import foundation-core.universe-levels
Idea
A map f : A → B
into a set B
satisfies the universal property of the set
truncation of A
if any map A → C
into a set C
extends uniquely along f
to a map B → C
.
Definition
The condition for a map into a set to be a set truncation
is-set-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (B : Set l2) → ( A → type-Set B) → UU (lsuc l ⊔ l1 ⊔ l2) is-set-truncation l B f = (C : Set l) → is-equiv (precomp-Set f C)
The universal property of set truncations
universal-property-set-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-set-truncation l {A = A} B f = (C : Set l) (g : A → type-Set C) → is-contr (Σ (type-hom-Set B C) (λ h → (h ∘ f) ~ g))
The dependent universal property of set truncations
precomp-Π-Set : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → Set l3) → ((b : B) → type-Set (C b)) → ((a : A) → type-Set (C (f a))) precomp-Π-Set f C h a = h (f a) dependent-universal-property-set-truncation : {l1 l2 : Level} (l : Level) {A : UU l1} (B : Set l2) (f : A → type-Set B) → UU (l1 ⊔ l2 ⊔ lsuc l) dependent-universal-property-set-truncation l B f = (X : type-Set B → Set l) → is-equiv (precomp-Π-Set f X)
Properties
A map into a set is a set truncation if it satisfies the universal property
abstract is-set-truncation-universal-property : (l : Level) {l1 l2 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → universal-property-set-truncation l B f → is-set-truncation l B f is-set-truncation-universal-property l B f up-f C = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ (type-hom-Set B C) (λ h → (h ∘ f) ~ g)) ( equiv-tot (λ h → equiv-funext)) ( up-f C g))
A map into a set satisfies the universal property if it is a set truncation
abstract universal-property-is-set-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → is-set-truncation l B f → universal-property-set-truncation l B f universal-property-is-set-truncation l B f is-settr-f C g = is-contr-equiv' ( Σ (type-hom-Set B C) (λ h → (h ∘ f) = g)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (is-settr-f C) g) map-is-set-truncation : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → ({l : Level} → is-set-truncation l B f) → (C : Set l3) (g : A → type-Set C) → type-hom-Set B C map-is-set-truncation B f is-settr-f C g = pr1 ( center ( universal-property-is-set-truncation _ B f is-settr-f C g)) triangle-is-set-truncation : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → (is-settr-f : {l : Level} → is-set-truncation l B f) → (C : Set l3) (g : A → type-Set C) → ((map-is-set-truncation B f is-settr-f C g) ∘ f) ~ g triangle-is-set-truncation B f is-settr-f C g = pr2 ( center ( universal-property-is-set-truncation _ B f is-settr-f C g))
The identity function on any set is a set truncation
abstract is-set-truncation-id : {l1 : Level} {A : UU l1} (H : is-set A) → {l2 : Level} → is-set-truncation l2 (pair A H) id is-set-truncation-id H B = is-equiv-precomp-is-equiv id is-equiv-id (type-Set B)
Any equivalence into a set is a set truncation
abstract is-set-truncation-equiv : {l1 l2 : Level} {A : UU l1} (B : Set l2) (e : A ≃ type-Set B) → {l : Level} → is-set-truncation l2 B (map-equiv e) is-set-truncation-equiv B e C = is-equiv-precomp-is-equiv (map-equiv e) (is-equiv-map-equiv e) (type-Set C)
Any set truncation satisfies the dependent universal property of the set truncation
abstract dependent-universal-property-is-set-truncation : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → ({l : Level} → is-set-truncation l B f) → dependent-universal-property-set-truncation l3 B f dependent-universal-property-is-set-truncation {A = A} B f H X = is-fiberwise-equiv-is-equiv-map-Σ ( λ (h : A → type-Set B) → (a : A) → type-Set (X (h a))) ( λ (g : type-Set B → type-Set B) → g ∘ f) ( λ g (s : (b : type-Set B) → type-Set (X (g b))) (a : A) → s (f a)) ( H B) ( is-equiv-equiv ( inv-distributive-Π-Σ) ( inv-distributive-Π-Σ) ( ind-Σ (λ g s → refl)) ( H (Σ-Set B X))) ( id)
Any map satisfying the dependent universal property of set truncations is a set truncation
abstract is-set-truncation-dependent-universal-property : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → ({l : Level} → dependent-universal-property-set-truncation l B f) → is-set-truncation l3 B f is-set-truncation-dependent-universal-property B f H X = H (λ b → X)
Any set quotient of the mere equality equivalence relation is a set truncation
abstract is-set-truncation-is-set-quotient : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → ( {l : Level} → is-set-quotient l (mere-eq-Eq-Rel A) B (reflecting-map-mere-eq B f)) → is-set-truncation l3 B f is-set-truncation-is-set-quotient {A = A} B f H X = is-equiv-comp ( pr1) ( precomp-Set-Quotient ( mere-eq-Eq-Rel A) ( B) ( reflecting-map-mere-eq B f) ( X)) ( H X) ( is-equiv-pr1-is-contr ( λ h → is-proof-irrelevant-is-prop ( is-prop-reflects-Eq-Rel (mere-eq-Eq-Rel A) X h) ( reflects-mere-eq X h)))
Any set truncation is a quotient of the mere equality equivalence relation
abstract is-set-quotient-is-set-truncation : {l1 l2 l3 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B) → ( {l : Level} → is-set-truncation l B f) → is-set-quotient l3 (mere-eq-Eq-Rel A) B (reflecting-map-mere-eq B f) is-set-quotient-is-set-truncation {A = A} B f H X = is-equiv-right-factor ( pr1) ( precomp-Set-Quotient ( mere-eq-Eq-Rel A) ( B) ( reflecting-map-mere-eq B f) ( X)) ( is-equiv-pr1-is-contr ( λ h → is-proof-irrelevant-is-prop ( is-prop-reflects-Eq-Rel (mere-eq-Eq-Rel A) X h) ( reflects-mere-eq X h))) ( H X)