Central elements of groups
module group-theory.central-elements-groups where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import group-theory.central-elements-monoids open import group-theory.conjugation open import group-theory.groups
Idea
An element x
of a group G
is said to be central if xy = yx
for every
y : G
.
Definition
module _ {l : Level} (G : Group l) where is-central-element-group-Prop : type-Group G → Prop l is-central-element-group-Prop = is-central-element-monoid-Prop (monoid-Group G) is-central-element-Group : type-Group G → UU l is-central-element-Group = is-central-element-Monoid (monoid-Group G) is-prop-is-central-element-Group : (x : type-Group G) → is-prop (is-central-element-Group x) is-prop-is-central-element-Group = is-prop-is-central-element-Monoid (monoid-Group G)
Properties
The unit element is central
module _ {l : Level} (G : Group l) where is-central-element-unit-Group : is-central-element-Group G (unit-Group G) is-central-element-unit-Group = is-central-element-unit-Monoid (monoid-Group G)
The product of two central elements is central
module _ {l : Level} (G : Group l) where is-central-element-mul-Group : (x y : type-Group G) → is-central-element-Group G x → is-central-element-Group G y → is-central-element-Group G (mul-Group G x y) is-central-element-mul-Group = is-central-element-mul-Monoid (monoid-Group G)
The inverse of a central element is central
module _ {l : Level} (G : Group l) where is-central-element-inv-Group : (x : type-Group G) → is-central-element-Group G x → is-central-element-Group G (inv-Group G x) is-central-element-inv-Group x H y = ( inv (inv-left-div-Group G y x)) ∙ ( ( ap (inv-Group G) (inv (H (inv-Group G y)))) ∙ ( inv-right-div-Group G x y))
The central elements are closed under conjugation
module _ {l : Level} (G : Group l) where is-fixed-point-conjugation-is-central-element-Group : (x y : type-Group G) → is-central-element-Group G x → conjugation-Group G y x = x is-fixed-point-conjugation-is-central-element-Group x y H = ( ap (mul-Group' G (inv-Group G y)) (inv (H y))) ∙ ( isretr-mul-inv-Group' G y x) is-central-element-conjugation-Group : (x y : type-Group G) → is-central-element-Group G x → is-central-element-Group G (conjugation-Group G y x) is-central-element-conjugation-Group x y H = is-closed-under-eq-subtype' ( is-central-element-group-Prop G) ( H) ( is-fixed-point-conjugation-is-central-element-Group x y H)