Acyclic types
module synthetic-homotopy-theory.acyclic-types where
Imports
open import foundation.contractible-types open import foundation.propositions open import foundation.universe-levels open import synthetic-homotopy-theory.suspensions-of-types
Idea
A type A
is said to be acyclic if its suspension is contractible.
Definition
is-acyclic-Prop : {l : Level} → UU l → Prop l is-acyclic-Prop A = is-contr-Prop (suspension A) is-acyclic : {l : Level} → UU l → UU l is-acyclic A = type-Prop (is-acyclic-Prop A) is-prop-is-acyclic : {l : Level} (A : UU l) → is-prop (is-acyclic A) is-prop-is-acyclic A = is-prop-type-Prop (is-acyclic-Prop A)