The precategory of finite species
module species.precategory-of-finite-species where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import species.morphisms-finite-species open import species.species-of-finite-types
Idea
The precategory of finite species consists of finite species and homomorphisms of finite species.
Definition
species-𝔽-Large-Precategory : (l1 : Level) → Large-Precategory (λ l → lsuc l1 ⊔ lsuc l) (λ l2 l3 → lsuc l1 ⊔ l2 ⊔ l3) obj-Large-Precategory (species-𝔽-Large-Precategory l1) = species-𝔽 l1 hom-Large-Precategory (species-𝔽-Large-Precategory l1) = hom-species-𝔽 comp-hom-Large-Precategory (species-𝔽-Large-Precategory l1) {X = F} {G} {H} = comp-hom-species-𝔽 F G H id-hom-Large-Precategory (species-𝔽-Large-Precategory l1) {X = F} = id-hom-species-𝔽 F associative-comp-hom-Large-Precategory ( species-𝔽-Large-Precategory l1) {X = F} {G} {H} {K} h g f = associative-comp-hom-species-𝔽 F G H K h g f left-unit-law-comp-hom-Large-Precategory ( species-𝔽-Large-Precategory l1) {X = F} {G} f = left-unit-law-comp-hom-species-𝔽 F G f right-unit-law-comp-hom-Large-Precategory ( species-𝔽-Large-Precategory l1) {X = F} {G} f = right-unit-law-comp-hom-species-𝔽 F G f