Large subsuplattices
module order-theory.large-subsuplattices where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets open import order-theory.large-suplattices
Idea
A large subsuplattice of a large suplattice is a large subposet which is closed under suprema.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level → Level} (L : Large-Suplattice α β) where is-closed-under-sup-Large-Subposet : Large-Subposet γ (large-poset-Large-Suplattice L) → UUω is-closed-under-sup-Large-Subposet S = {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Suplattice L l2) → ((i : I) → is-in-Large-Subposet (large-poset-Large-Suplattice L) S (x i)) → is-in-Large-Subposet ( large-poset-Large-Suplattice L) ( S) ( sup-Large-Suplattice L x) record Large-Subsuplattice {α : Level → Level} {β : Level → Level → Level} (γ : Level → Level) (L : Large-Suplattice α β) : UUω where field large-subposet-Large-Subsuplattice : Large-Subposet γ (large-poset-Large-Suplattice L) is-closed-under-sup-Large-Subsuplattice : is-closed-under-sup-Large-Subposet L (large-subposet-Large-Subsuplattice) open Large-Subsuplattice public module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level → Level} (P : Large-Suplattice α β) (S : Large-Subsuplattice γ P) where large-poset-Large-Subsuplattice : Large-Poset (λ l → α l ⊔ γ l) (λ l1 l2 → β l1 l2) large-poset-Large-Subsuplattice = large-poset-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-in-Large-Subsuplattice : {l1 : Level} → type-Large-Suplattice P l1 → UU (γ l1) is-in-Large-Subsuplattice = is-in-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) type-Large-Subsuplattice : (l1 : Level) → UU (α l1 ⊔ γ l1) type-Large-Subsuplattice = type-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) leq-Large-Subsuplattice-Prop : {l1 l2 : Level} → type-Large-Subsuplattice l1 → type-Large-Subsuplattice l2 → Prop (β l1 l2) leq-Large-Subsuplattice-Prop = leq-Large-Subposet-Prop ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) leq-Large-Subsuplattice : {l1 l2 : Level} → type-Large-Subsuplattice l1 → type-Large-Subsuplattice l2 → UU (β l1 l2) leq-Large-Subsuplattice = leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-prop-leq-Large-Subsuplattice : {l1 l2 : Level} → (x : type-Large-Subsuplattice l1) (y : type-Large-Subsuplattice l2) → is-prop (leq-Large-Subsuplattice x y) is-prop-leq-Large-Subsuplattice = is-prop-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) refl-leq-Large-Subsuplattice : {l1 : Level} (x : type-Large-Subsuplattice l1) → leq-Large-Subsuplattice x x refl-leq-Large-Subsuplattice = refl-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) transitive-leq-Large-Subsuplattice : {l1 l2 l3 : Level} (x : type-Large-Subsuplattice l1) (y : type-Large-Subsuplattice l2) (z : type-Large-Subsuplattice l3) → leq-Large-Subsuplattice y z → leq-Large-Subsuplattice x y → leq-Large-Subsuplattice x z transitive-leq-Large-Subsuplattice = transitive-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) antisymmetric-leq-Large-Subsuplattice : {l1 : Level} (x : type-Large-Subsuplattice l1) (y : type-Large-Subsuplattice l1) → leq-Large-Subsuplattice x y → leq-Large-Subsuplattice y x → x = y antisymmetric-leq-Large-Subsuplattice = antisymmetric-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-closed-under-sim-Large-Subsuplattice : {l1 l2 : Level} (x : type-Large-Suplattice P l1) (y : type-Large-Suplattice P l2) → leq-Large-Suplattice P x y → leq-Large-Suplattice P y x → is-in-Large-Subsuplattice x → is-in-Large-Subsuplattice y is-closed-under-sim-Large-Subsuplattice = is-closed-under-sim-Large-Subposet ( large-subposet-Large-Subsuplattice S)