The precategory of group actions
module group-theory.precategory-of-group-actions where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-group-actions
Definitions
The large precategory of G-sets
module _ {l1 : Level} (G : Group l1) where Abstract-Group-Action-Large-Precategory : Large-Precategory (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) obj-Large-Precategory Abstract-Group-Action-Large-Precategory = Abstract-Group-Action G hom-Large-Precategory Abstract-Group-Action-Large-Precategory = hom-Abstract-Group-Action G comp-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} {Y} {Z} = comp-hom-Abstract-Group-Action G X Y Z id-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} = id-hom-Abstract-Group-Action G X associative-comp-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} {Y} {Z} {W} = associative-comp-hom-Abstract-Group-Action G X Y Z W left-unit-law-comp-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} {Y} = left-unit-law-comp-hom-Abstract-Group-Action G X Y right-unit-law-comp-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} {Y} = right-unit-law-comp-hom-Abstract-Group-Action G X Y
The small precategory of G-sets
module _ {l1 : Level} (G : Group l1) where Abstract-Group-Action-Precategory : (l2 : Level) → Precategory (l1 ⊔ lsuc l2) (l1 ⊔ l2) pr1 (Abstract-Group-Action-Precategory l2) = Abstract-Group-Action G l2 pr1 (pr2 (Abstract-Group-Action-Precategory l2)) = hom-Abstract-Group-Action G pr1 (pr1 (pr2 (pr2 (Abstract-Group-Action-Precategory l2)))) {X} {Y} {Z} = comp-hom-Abstract-Group-Action G X Y Z pr2 (pr1 (pr2 (pr2 (Abstract-Group-Action-Precategory l2)))) {X} {Y} {Z} {W} = associative-comp-hom-Abstract-Group-Action G X Y Z W pr1 (pr2 (pr2 (pr2 (Abstract-Group-Action-Precategory l2)))) = id-hom-Abstract-Group-Action G pr1 (pr2 (pr2 (pr2 (pr2 (Abstract-Group-Action-Precategory l2))))) {X} {Y} = left-unit-law-comp-hom-Abstract-Group-Action G X Y pr2 (pr2 (pr2 (pr2 (pr2 (Abstract-Group-Action-Precategory l2))))) {X} {Y} = right-unit-law-comp-hom-Abstract-Group-Action G X Y