Steiner systems
module univalent-combinatorics.steiner-systems where
Imports
open import elementary-number-theory.natural-numbers open import foundation.contractible-types open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.universe-levels open import univalent-combinatorics.finite-types
Idea
A Steiner system of type (t,k,n) : ℕ³
consists of an n
-element type X
equipped with a (decidable) set P
of k
-element subtypes of X
such that
each t
-element subtype of X
is contained in exactly one k
-element subtype
in P
. A basic example is the Fano plane, which is a Steiner system of type
(2,3,7)
.
Definition
Steiner systems
Steiner-System : ℕ → ℕ → ℕ → UU (lsuc lzero) Steiner-System t k n = Σ ( UU-Fin lzero n) ( λ X → Σ ( decidable-subtype lzero ( Σ ( decidable-subtype lzero (type-UU-Fin n X)) ( λ P → has-cardinality k (type-decidable-subtype P)))) ( λ P → ( Q : decidable-subtype lzero (type-UU-Fin n X)) → has-cardinality t (type-decidable-subtype Q) → is-contr (Σ ( type-decidable-subtype P) ( λ U → (x : type-UU-Fin n X) → is-in-decidable-subtype Q x → is-in-decidable-subtype (pr1 (pr1 U)) x))))