Congruence relations on semigroups
module group-theory.congruence-relations-semigroups where
Imports
open import foundation.binary-relations open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.subtype-identity-principle open import foundation.universe-levels open import group-theory.semigroups
Idea
A congruence relation on a semigroup G
is an equivalence relation ≡
on G
such that for every x1 x2 y1 y2 : G
such that x1 ≡ x2
and y1 ≡ y2
we have
x1 · y1 ≡ x2 · y2
.
Definition
is-congruence-semigroup-Prop : {l1 l2 : Level} (G : Semigroup l1) → Eq-Rel l2 (type-Semigroup G) → Prop (l1 ⊔ l2) is-congruence-semigroup-Prop G R = Π-Prop' ( type-Semigroup G) ( λ x1 → Π-Prop' ( type-Semigroup G) ( λ x2 → Π-Prop' ( type-Semigroup G) ( λ y1 → Π-Prop' ( type-Semigroup G) ( λ y2 → function-Prop ( sim-Eq-Rel R x1 x2) ( function-Prop ( sim-Eq-Rel R y1 y2) ( prop-Eq-Rel R ( mul-Semigroup G x1 y1) ( mul-Semigroup G x2 y2))))))) is-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) → Eq-Rel l2 (type-Semigroup G) → UU (l1 ⊔ l2) is-congruence-Semigroup G R = type-Prop (is-congruence-semigroup-Prop G R) is-prop-is-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R : Eq-Rel l2 (type-Semigroup G)) → is-prop (is-congruence-Semigroup G R) is-prop-is-congruence-Semigroup G R = is-prop-type-Prop (is-congruence-semigroup-Prop G R) congruence-Semigroup : {l : Level} (l2 : Level) (G : Semigroup l) → UU (l ⊔ lsuc l2) congruence-Semigroup l2 G = Σ (Eq-Rel l2 (type-Semigroup G)) (is-congruence-Semigroup G) module _ {l1 l2 : Level} (G : Semigroup l1) (R : congruence-Semigroup l2 G) where eq-rel-congruence-Semigroup : Eq-Rel l2 (type-Semigroup G) eq-rel-congruence-Semigroup = pr1 R prop-congruence-Semigroup : Rel-Prop l2 (type-Semigroup G) prop-congruence-Semigroup = prop-Eq-Rel eq-rel-congruence-Semigroup sim-congruence-Semigroup : (x y : type-Semigroup G) → UU l2 sim-congruence-Semigroup = sim-Eq-Rel eq-rel-congruence-Semigroup is-prop-sim-congruence-Semigroup : (x y : type-Semigroup G) → is-prop (sim-congruence-Semigroup x y) is-prop-sim-congruence-Semigroup = is-prop-sim-Eq-Rel eq-rel-congruence-Semigroup refl-congruence-Semigroup : is-reflexive-Rel-Prop prop-congruence-Semigroup refl-congruence-Semigroup = refl-Eq-Rel eq-rel-congruence-Semigroup symm-congruence-Semigroup : is-symmetric-Rel-Prop prop-congruence-Semigroup symm-congruence-Semigroup = symm-Eq-Rel eq-rel-congruence-Semigroup equiv-symm-congruence-Semigroup : (x y : type-Semigroup G) → sim-congruence-Semigroup x y ≃ sim-congruence-Semigroup y x equiv-symm-congruence-Semigroup x y = equiv-symm-Eq-Rel eq-rel-congruence-Semigroup trans-congruence-Semigroup : is-transitive-Rel-Prop prop-congruence-Semigroup trans-congruence-Semigroup = trans-Eq-Rel eq-rel-congruence-Semigroup mul-congruence-Semigroup : is-congruence-Semigroup G eq-rel-congruence-Semigroup mul-congruence-Semigroup = pr2 R
Properties
Characterizing equality of congruences of semigroups
relate-same-elements-congruence-Semigroup : {l1 l2 l3 : Level} (G : Semigroup l1) → congruence-Semigroup l2 G → congruence-Semigroup l3 G → UU (l1 ⊔ l2 ⊔ l3) relate-same-elements-congruence-Semigroup G R S = relate-same-elements-Eq-Rel ( eq-rel-congruence-Semigroup G R) ( eq-rel-congruence-Semigroup G S) refl-relate-same-elements-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R : congruence-Semigroup l2 G) → relate-same-elements-congruence-Semigroup G R R refl-relate-same-elements-congruence-Semigroup G R = refl-relate-same-elements-Eq-Rel (eq-rel-congruence-Semigroup G R) is-contr-total-relate-same-elements-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R : congruence-Semigroup l2 G) → is-contr ( Σ ( congruence-Semigroup l2 G) ( relate-same-elements-congruence-Semigroup G R)) is-contr-total-relate-same-elements-congruence-Semigroup G R = is-contr-total-Eq-subtype ( is-contr-total-relate-same-elements-Eq-Rel ( eq-rel-congruence-Semigroup G R)) ( is-prop-is-congruence-Semigroup G) ( eq-rel-congruence-Semigroup G R) ( refl-relate-same-elements-congruence-Semigroup G R) ( mul-congruence-Semigroup G R) relate-same-elements-eq-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R S : congruence-Semigroup l2 G) → R = S → relate-same-elements-congruence-Semigroup G R S relate-same-elements-eq-congruence-Semigroup G R .R refl = refl-relate-same-elements-congruence-Semigroup G R is-equiv-relate-same-elements-eq-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R S : congruence-Semigroup l2 G) → is-equiv (relate-same-elements-eq-congruence-Semigroup G R S) is-equiv-relate-same-elements-eq-congruence-Semigroup G R = fundamental-theorem-id ( is-contr-total-relate-same-elements-congruence-Semigroup G R) ( relate-same-elements-eq-congruence-Semigroup G R) extensionality-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R S : congruence-Semigroup l2 G) → (R = S) ≃ relate-same-elements-congruence-Semigroup G R S pr1 (extensionality-congruence-Semigroup G R S) = relate-same-elements-eq-congruence-Semigroup G R S pr2 (extensionality-congruence-Semigroup G R S) = is-equiv-relate-same-elements-eq-congruence-Semigroup G R S eq-relate-same-elements-congruence-Semigroup : {l1 l2 : Level} (G : Semigroup l1) (R S : congruence-Semigroup l2 G) → relate-same-elements-congruence-Semigroup G R S → R = S eq-relate-same-elements-congruence-Semigroup G R S = map-inv-equiv (extensionality-congruence-Semigroup G R S)