Natural transformations between functors between categories
module category-theory.natural-transformations-categories where
Imports
open import category-theory.categories open import category-theory.functors-categories open import category-theory.natural-transformations-precategories open import foundation.universe-levels
Idea
A natural transformation between functors on categories is a natural transformation between the functors on the underlying precategories.
Definition
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where is-natural-transformation-Category : ( ( x : obj-Category C) → type-hom-Category D ( obj-functor-Category C D F x) ( obj-functor-Category C D G x)) → UU (l1 ⊔ l2 ⊔ l4) is-natural-transformation-Category = is-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) natural-transformation-Category : UU (l1 ⊔ l2 ⊔ l4) natural-transformation-Category = natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) components-natural-transformation-Category : natural-transformation-Category → (x : obj-Category C) → type-hom-Category D ( obj-functor-Category C D F x) ( obj-functor-Category C D G x) components-natural-transformation-Category = components-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G)