Formalisation of the Symmetry Book - 24 pushouts
module synthetic-homotopy-theory.24-pushouts where
Imports
open import foundation.constant-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts
Exercises
Exercise 13.1
This exercise remains to be formalized.
Exercise 13.2
is-equiv-cofiber-point : {l : Level} {B : UU l} (b : B) → is-equiv (pr1 (cocone-pushout (const unit B b) (const unit unit star))) is-equiv-cofiber-point {l} {B} b = is-equiv-universal-property-pushout' ( const unit B b) ( const unit unit star) ( cocone-pushout (const unit B b) (const unit unit star)) ( is-equiv-is-contr (const unit unit star) is-contr-unit is-contr-unit) ( up-pushout (const unit B b) (const unit unit star))
Exercise 16.2
-- ev-disjunction : -- {l1 l2 l3 : Level} (P : Prop l1) (Q : Prop l2) (R : Prop l3) → -- ((type-Prop P) * (type-Prop Q) → (type-Prop R)) → -- (type-Prop P → type-Prop R) × (type-Prop Q → type-Prop R) -- ev-disjunction P Q R f = -- pair -- ( f ∘ (inl-join (type-Prop P) (type-Prop Q))) -- ( f ∘ (inr-join (type-Prop P) (type-Prop Q))) -- comparison-ev-disjunction : -- {l1 l2 l3 : Level} (P : Prop l1) (Q : Prop l2) (R : Prop l3) → -- cocone-join (type-Prop P) (type-Prop Q) (type-Prop R) -- universal-property-disjunction-join-prop : -- {l1 l2 l3 : Level} (P : Prop l1) (Q : Prop l2) (R : Prop l3) → -- is-equiv (ev-disjunction P Q R)