The invariant basis property of rings
module ring-theory.invariant-basis-property-rings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import ring-theory.dependent-products-rings open import ring-theory.isomorphisms-rings open import ring-theory.rings open import univalent-combinatorics.standard-finite-types
Idea
A ring R is said to satisfy the invariant basis property if R^m ≅ R^n
implies
m = n
for any two natural numbers m
and n
.
Definition
invariant-basis-property-Ring : {l1 : Level} → Ring l1 → UU l1 invariant-basis-property-Ring R = (m n : ℕ) → iso-Ring (Π-Ring (Fin m) (λ i → R)) (Π-Ring (Fin n) (λ i → R)) → Id m n