Products of Dirichlet series of species of types in subuniverses
module species.products-dirichlet-series-species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.functions open import foundation.subuniverses open import foundation.universe-levels open import species.dirichlet-series-species-of-types-in-subuniverses open import species.species-of-types-in-subuniverses
Idea
The product of two Dirichlet series is the pointwise product.
Definition
module _ {l1 l2 l3 l4 l5 l6 : Level} (P : subuniverse l1 l2) (C1 : is-closed-under-products-subuniverse P) (Q : global-subuniverse id) (H : species-subuniverse-domain l5 P) (C2 : preserves-product-species-subuniverse-domain P C1 H) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l6) where product-dirichlet-series-subuniverses : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) product-dirichlet-series-subuniverses = dirichlet-series-species-subuniverses ( P) ( subuniverse-global-subuniverse Q l3) ( C1) ( H) ( C2) ( S) ( X) × dirichlet-series-species-subuniverses ( P) ( subuniverse-global-subuniverse Q l4) ( C1) ( H) ( C2) ( T) ( X)