Loop spaces

module synthetic-homotopy-theory.loop-spaces where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.universe-levels

open import structured-types.coherent-h-spaces
open import structured-types.magmas
open import structured-types.pointed-equivalences
open import structured-types.pointed-types
open import structured-types.wild-quasigroups

Idea

The loop space of a pointed type A is the pointed type of self-identifications of the base point of A. The loop space comes equipped with a groupoidal structure.

Definitions

The loop space of a pointed type

module _
  {l : Level} (A : Pointed-Type l)
  where

  type-Ω : UU l
  type-Ω = Id (point-Pointed-Type A) (point-Pointed-Type A)

  refl-Ω : type-Ω
  refl-Ω = refl

  Ω : Pointed-Type l
  Ω = pair type-Ω refl-Ω

The magma of loops on a pointed space

module _
  {l : Level} (A : Pointed-Type l)
  where

  mul-Ω : type-Ω A  type-Ω A  type-Ω A
  mul-Ω x y = x  y

  Ω-Magma : Magma l
  pr1 Ω-Magma = type-Ω A
  pr2 Ω-Magma = mul-Ω

The wild unital magma of loops on a pointed space

module _
  {l : Level} (A : Pointed-Type l)
  where

  left-unit-law-mul-Ω :
    (x : type-Ω A)  Id (mul-Ω A (refl-Ω A) x) x
  left-unit-law-mul-Ω x = left-unit

  right-unit-law-mul-Ω :
    (x : type-Ω A)  Id (mul-Ω A x (refl-Ω A)) x
  right-unit-law-mul-Ω x = right-unit

  Ω-Coherent-H-Space : Coherent-H-Space l
  pr1 Ω-Coherent-H-Space = Ω A
  pr1 (pr2 Ω-Coherent-H-Space) = mul-Ω A
  pr1 (pr2 (pr2 Ω-Coherent-H-Space)) = left-unit-law-mul-Ω
  pr1 (pr2 (pr2 (pr2 Ω-Coherent-H-Space))) = right-unit-law-mul-Ω
  pr2 (pr2 (pr2 (pr2 Ω-Coherent-H-Space))) = refl

The wild quasigroup of loops on a pointed space

module _
  {l : Level} (A : Pointed-Type l)
  where

  inv-Ω : type-Ω A  type-Ω A
  inv-Ω = inv

  left-inverse-law-mul-Ω :
    (x : type-Ω A)  Id (mul-Ω A (inv-Ω x) x) (refl-Ω A)
  left-inverse-law-mul-Ω x = left-inv x

  right-inverse-law-mul-Ω :
    (x : type-Ω A)  Id (mul-Ω A x (inv-Ω x)) (refl-Ω A)
  right-inverse-law-mul-Ω x = right-inv x

  Ω-Wild-Quasigroup : Wild-Quasigroup l
  pr1 Ω-Wild-Quasigroup = Ω-Magma A
  pr2 Ω-Wild-Quasigroup = is-binary-equiv-concat

Associativity of concatenation on loop spaces

module _
  {l : Level} (A : Pointed-Type l)
  where

  associative-mul-Ω :
    (x y z : type-Ω A)  Id (mul-Ω A (mul-Ω A x y) z) (mul-Ω A x (mul-Ω A y z))
  associative-mul-Ω x y z = assoc x y z

We compute transport of type-Ω.

module _
  {l1 : Level} {A : UU l1} {x y : A}
  where

  equiv-tr-Ω : Id x y  Ω (pair A x) ≃∗ Ω (pair A y)
  equiv-tr-Ω refl = pair id-equiv refl

  equiv-tr-type-Ω : Id x y  type-Ω (pair A x)  type-Ω (pair A y)
  equiv-tr-type-Ω p =
    equiv-pointed-equiv (Ω (pair A x)) (Ω (pair A y)) (equiv-tr-Ω p)

  tr-type-Ω : Id x y  type-Ω (pair A x)  type-Ω (pair A y)
  tr-type-Ω p = map-equiv (equiv-tr-type-Ω p)

  is-equiv-tr-type-Ω : (p : Id x y)  is-equiv (tr-type-Ω p)
  is-equiv-tr-type-Ω p = is-equiv-map-equiv (equiv-tr-type-Ω p)

  preserves-refl-tr-Ω : (p : Id x y)  Id (tr-type-Ω p refl) refl
  preserves-refl-tr-Ω refl = refl

  preserves-mul-tr-Ω :
    (p : Id x y) (u v : type-Ω (pair A x)) 
    Id ( tr-type-Ω p (mul-Ω (pair A x) u v))
       ( mul-Ω (pair A y) (tr-type-Ω p u) (tr-type-Ω p v))
  preserves-mul-tr-Ω refl u v = refl

  preserves-inv-tr-Ω :
    (p : Id x y) (u : type-Ω (pair A x)) 
    Id ( tr-type-Ω p (inv-Ω (pair A x) u))
       ( inv-Ω (pair A y) (tr-type-Ω p u))
  preserves-inv-tr-Ω refl u = refl

  eq-tr-type-Ω :
    (p : Id x y) (q : type-Ω (pair A x)) 
    Id (tr-type-Ω p q) (inv p  (q  p))
  eq-tr-type-Ω refl q = inv right-unit