Dirichlet convolution
module elementary-number-theory.dirichlet-convolution where
Imports
open import elementary-number-theory.arithmetic-functions open import elementary-number-theory.bounded-sums-arithmetic-functions open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonzero-natural-numbers open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.universe-levels open import ring-theory.rings
Definition
module _ {l : Level} (R : Ring l) where dirichlet-convolution-arithmetic-functions-Ring : (f g : type-arithmetic-functions-Ring R) → type-arithmetic-functions-Ring R dirichlet-convolution-arithmetic-functions-Ring f g (pair zero-ℕ H) = ex-falso (H refl) dirichlet-convolution-arithmetic-functions-Ring f g (pair (succ-ℕ n) H) = bounded-sum-arithmetic-function-Ring R ( succ-ℕ n) ( λ x → div-ℕ-Decidable-Prop (pr1 x) (succ-ℕ n) (pr2 x)) ( λ { (pair x K) H → mul-Ring R ( f ( pair x K)) ( g ( quotient-div-nonzero-ℕ x (succ-nonzero-ℕ' n) H))})