Stabilizers of concrete group actions
module group-theory.stabilizer-groups-concrete-group-actions where
Imports
open import foundation.0-connected-types open import foundation.dependent-pair-types open import foundation.functions open import foundation.mere-equality open import foundation.propositional-truncations open import foundation.sets open import foundation.subtypes open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import group-theory.subgroups-concrete-groups open import group-theory.transitive-concrete-group-actions
Idea
The stabilizer of an element x : X point
of a concrete G-set X : BG → Set
is
the connected component of pair point x
in the type of orbits of X
. Its loop
space is indeed the type of elements g : G
such that g x = x
.
Definition
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where action-stabilizer-action-Concrete-Group : type-action-Concrete-Group G X → action-Concrete-Group (l1 ⊔ l2) G action-stabilizer-action-Concrete-Group x u = set-subset ( X u) ( λ y → mere-eq-Prop (pair (shape-Concrete-Group G) x) (pair u y)) is-transitive-action-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → is-transitive-action-Concrete-Group G ( action-stabilizer-action-Concrete-Group x) is-transitive-action-stabilizer-action-Concrete-Group x = is-0-connected-equiv' ( associative-Σ ( classifying-type-Concrete-Group G) ( type-Set ∘ X) ( λ uy → mere-eq (pair (shape-Concrete-Group G) x) (pair (pr1 uy) (pr2 uy)))) ( is-0-connected-mere-eq ( pair (pair (shape-Concrete-Group G) x) refl-mere-eq) ( λ (pair uy p) → apply-universal-property-trunc-Prop p ( mere-eq-Prop ( pair (pair (shape-Concrete-Group G) x) refl-mere-eq) ( pair uy p)) ( λ q → unit-trunc-Prop ( eq-type-subtype ( mere-eq-Prop (pair (shape-Concrete-Group G) x)) ( q))))) subgroup-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → subgroup-Concrete-Group (l1 ⊔ l2) G pr1 (pr1 (subgroup-stabilizer-action-Concrete-Group x)) = action-stabilizer-action-Concrete-Group x pr2 (pr1 (subgroup-stabilizer-action-Concrete-Group x)) = is-transitive-action-stabilizer-action-Concrete-Group x pr1 (pr2 (subgroup-stabilizer-action-Concrete-Group x)) = x pr2 (pr2 (subgroup-stabilizer-action-Concrete-Group x)) = refl-mere-eq