Tetrahedra in 3-dimensional space
module finite-group-theory.tetrahedra-in-3-space where
Imports
open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.universe-levels open import univalent-combinatorics.2-element-decidable-subtypes open import univalent-combinatorics.cyclic-types open import univalent-combinatorics.finite-types
Idea
The type of tetrahedra in 3-dimensional space is a type of tetrahedra that can
be rotated, but not reflected. In other words, the symmetry group of the
tetrahedra in 3-dimensional space is the alternating group A₄
.
Note that any rotation of a tetrahedron in 3-space induces a rotation on the set of opposing pairs of edges. There are three such pairs of edges.
Definition
tetrahedron-in-3-space : UU (lsuc lzero) tetrahedron-in-3-space = Σ ( UU-Fin lzero 4) ( λ X → cyclic-structure 3 ( Σ ( 2-Element-Decidable-Subtype lzero ( 2-Element-Decidable-Subtype lzero ( type-UU-Fin 4 X))) ( λ Q → (x : type-UU-Fin 4 X) → is-empty ( (P : type-2-Element-Decidable-Subtype Q) → is-in-2-Element-Decidable-Subtype (pr1 P) ( x))))) module _ (T : tetrahedron-in-3-space) where vertex-tetrahedron-in-3-space : UU lzero vertex-tetrahedron-in-3-space = type-UU-Fin 4 (pr1 T) cyclic-structure-tetrahedron-in-3-space : cyclic-structure 3 ( Σ ( 2-Element-Decidable-Subtype lzero ( 2-Element-Decidable-Subtype lzero ( vertex-tetrahedron-in-3-space))) ( λ Q → (x : vertex-tetrahedron-in-3-space) → is-empty ( (P : type-2-Element-Decidable-Subtype Q) → is-in-2-Element-Decidable-Subtype (pr1 P) ( x)))) cyclic-structure-tetrahedron-in-3-space = pr2 T