Identity systems
module foundation-core.identity-systems where
Imports
open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.fundamental-theorem-of-identity-types open import foundation-core.identity-types open import foundation-core.sections open import foundation-core.universe-levels
Idea
A unary identity system on a type A
equipped with a point a : A
consists of
a type family B
over A
equipped with a point b : B a
that satisfies an
induction principle analogous to the induction principle of the identity type at
a
.
module _ {l1 l2 : Level} (l : Level) {A : UU l1} (B : A → UU l2) (a : A) (b : B a) where IND-identity-system : UU (l1 ⊔ l2 ⊔ lsuc l) IND-identity-system = ( P : (x : A) (y : B x) → UU l) → sec (λ (h : (x : A) (y : B x) → P x y) → h a b)
Properties
A type family over A
is an identity system if and only if it is equivalent to the identity type
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) (b : B a) where abstract Ind-identity-system : (is-contr-AB : is-contr (Σ A B)) → {l : Level} → IND-identity-system l B a b pr1 (Ind-identity-system is-contr-AB P) p x y = tr ( fam-Σ P) ( eq-is-contr is-contr-AB) ( p) pr2 (Ind-identity-system is-contr-AB P) p = ap ( λ t → tr (fam-Σ P) t p) ( eq-is-contr' ( is-prop-is-contr is-contr-AB (pair a b) (pair a b)) ( eq-is-contr is-contr-AB) ( refl)) abstract is-contr-total-space-IND-identity-system : ({l : Level} → IND-identity-system l B a b) → is-contr (Σ A B) pr1 (pr1 (is-contr-total-space-IND-identity-system ind)) = a pr2 (pr1 (is-contr-total-space-IND-identity-system ind)) = b pr2 (is-contr-total-space-IND-identity-system ind) (pair x y) = pr1 (ind (λ x' y' → (pair a b) = (pair x' y'))) refl x y abstract fundamental-theorem-id-IND-identity-system : ({l : Level} → IND-identity-system l B a b) → (f : (x : A) → a = x → B x) → (x : A) → is-equiv (f x) fundamental-theorem-id-IND-identity-system ind f = fundamental-theorem-id ( is-contr-total-space-IND-identity-system ind) ( f)