Morphisms of finite species
module species.morphisms-finite-species where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.functions open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import species.species-of-finite-types open import univalent-combinatorics.finite-types
Idea
A homomorphism between two finite species is a pointwise family of maps.
Definitions
The type of morphisms between finite species
type-hom-species-𝔽 : {l1 l2 l3 : Level} → species-𝔽 l1 l2 → species-𝔽 l1 l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) type-hom-species-𝔽 {l1} F G = (X : 𝔽 l1) → type-𝔽 (F X) → type-𝔽 (G X)
The identity momorphisms of finite species
id-hom-species-𝔽 : {l1 l2 : Level} (F : species-𝔽 l1 l2) → type-hom-species-𝔽 F F id-hom-species-𝔽 F = λ X x → x
Composition of morphisms of finite species
comp-hom-species-𝔽 : {l1 l2 l3 l4 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (H : species-𝔽 l1 l4) → type-hom-species-𝔽 G H → type-hom-species-𝔽 F G → type-hom-species-𝔽 F H comp-hom-species-𝔽 F G H f g X = (f X) ∘ (g X)
Homotopies of morphisms of finite species
htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → (type-hom-species-𝔽 F G) → (type-hom-species-𝔽 F G) → UU (lsuc l1 ⊔ l2 ⊔ l3) htpy-hom-species-𝔽 {l1} F G f g = (X : 𝔽 l1) → (f X) ~ (g X) refl-htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → (f : type-hom-species-𝔽 F G) → htpy-hom-species-𝔽 F G f f refl-htpy-hom-species-𝔽 F G f X = refl-htpy
Properties
Associativity of composition of homomorphisms of finite species
associative-comp-hom-species-𝔽 : {l1 l2 l3 l4 l5 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (H : species-𝔽 l1 l4) (K : species-𝔽 l1 l5) (h : type-hom-species-𝔽 H K) (g : type-hom-species-𝔽 G H) (f : type-hom-species-𝔽 F G) → Id ( comp-hom-species-𝔽 F G K (comp-hom-species-𝔽 G H K h g) f) ( comp-hom-species-𝔽 F H K h (comp-hom-species-𝔽 F G H g f)) associative-comp-hom-species-𝔽 F G H K h g f = refl
The unit laws for composition of homomorphisms of finite species
left-unit-law-comp-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : type-hom-species-𝔽 F G) → Id (comp-hom-species-𝔽 F G G (id-hom-species-𝔽 G) f) f left-unit-law-comp-hom-species-𝔽 F G f = refl right-unit-law-comp-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : type-hom-species-𝔽 F G) → Id (comp-hom-species-𝔽 F F G f (id-hom-species-𝔽 F)) f right-unit-law-comp-hom-species-𝔽 F G f = refl
Characterization of the identity type of homomorphisms of finite species
htpy-eq-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : type-hom-species-𝔽 F G) → Id f g → htpy-hom-species-𝔽 F G f g htpy-eq-hom-species-𝔽 F G f g refl X y = refl is-contr-htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : type-hom-species-𝔽 F G) → is-contr (Σ (type-hom-species-𝔽 F G) (htpy-hom-species-𝔽 F G f)) is-contr-htpy-hom-species-𝔽 F G f = is-contr-total-Eq-Π (λ X h → f X ~ h) (λ X → is-contr-total-htpy (f X)) is-equiv-htpy-eq-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : type-hom-species-𝔽 F G) → is-equiv (htpy-eq-hom-species-𝔽 F G f g) is-equiv-htpy-eq-hom-species-𝔽 F G f = fundamental-theorem-id ( is-contr-htpy-hom-species-𝔽 F G f) ( λ g → htpy-eq-hom-species-𝔽 F G f g) extensionality-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : type-hom-species-𝔽 F G) → Id f g ≃ htpy-hom-species-𝔽 F G f g pr1 (extensionality-hom-species-𝔽 F G f g) = htpy-eq-hom-species-𝔽 F G f g pr2 (extensionality-hom-species-𝔽 F G f g) = is-equiv-htpy-eq-hom-species-𝔽 F G f g
The type of homomorphisms of finite species is a set
is-set-type-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → is-set (type-hom-species-𝔽 F G) is-set-type-hom-species-𝔽 F G f g = is-prop-equiv ( extensionality-hom-species-𝔽 F G f g) ( is-prop-Π ( λ X → is-prop-Π ( λ x p q → is-set-is-finite (is-finite-type-𝔽 (G X)) (f X x) (g X x) p q))) hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → Set (lsuc l1 ⊔ l2 ⊔ l3) pr1 (hom-species-𝔽 F G) = type-hom-species-𝔽 F G pr2 (hom-species-𝔽 F G) = is-set-type-hom-species-𝔽 F G