Lattices
module order-theory.lattices where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.join-semilattices open import order-theory.meet-semilattices open import order-theory.posets
Idea
A lattice is a poset in which every pair of elements has a meet (a greatest lower bound) and a join (a least upper bound).
Note that we don't require that meets distribute over joins. Such lattices are called distributive lattices.
Definitions
Order theoretic lattices
is-lattice-Poset-Prop : {l1 l2 : Level} (P : Poset l1 l2) → Prop (l1 ⊔ l2) is-lattice-Poset-Prop P = prod-Prop ( is-meet-semilattice-Poset-Prop P) ( is-join-semilattice-Poset-Prop P) is-lattice-Poset : {l1 l2 : Level} → Poset l1 l2 → UU (l1 ⊔ l2) is-lattice-Poset P = type-Prop (is-lattice-Poset-Prop P) is-prop-is-lattice-Poset : {l1 l2 : Level} (P : Poset l1 l2) → is-prop (is-lattice-Poset P) is-prop-is-lattice-Poset P = is-prop-type-Prop (is-lattice-Poset-Prop P) Lattice : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Lattice l1 l2 = Σ (Poset l1 l2) is-lattice-Poset module _ {l1 l2 : Level} (A : Lattice l1 l2) where poset-Lattice : Poset l1 l2 poset-Lattice = pr1 A type-Lattice : UU l1 type-Lattice = type-Poset poset-Lattice leq-lattice-Prop : (x y : type-Lattice) → Prop l2 leq-lattice-Prop = leq-Poset-Prop poset-Lattice leq-Lattice : (x y : type-Lattice) → UU l2 leq-Lattice = leq-Poset poset-Lattice is-prop-leq-Lattice : (x y : type-Lattice) → is-prop (leq-Lattice x y) is-prop-leq-Lattice = is-prop-leq-Poset poset-Lattice refl-leq-Lattice : (x : type-Lattice) → leq-Lattice x x refl-leq-Lattice = refl-leq-Poset poset-Lattice antisymmetric-leq-Lattice : (x y : type-Lattice) → leq-Lattice x y → leq-Lattice y x → Id x y antisymmetric-leq-Lattice = antisymmetric-leq-Poset poset-Lattice transitive-leq-Lattice : (x y z : type-Lattice) → leq-Lattice y z → leq-Lattice x y → leq-Lattice x z transitive-leq-Lattice = transitive-leq-Poset poset-Lattice is-set-type-Lattice : is-set type-Lattice is-set-type-Lattice = is-set-type-Poset poset-Lattice set-Lattice : Set l1 set-Lattice = set-Poset poset-Lattice is-lattice-Lattice : is-lattice-Poset poset-Lattice is-lattice-Lattice = pr2 A is-meet-semilattice-Lattice : is-meet-semilattice-Poset poset-Lattice is-meet-semilattice-Lattice = pr1 is-lattice-Lattice meet-semilattice-Lattice : Meet-Semilattice l1 meet-semilattice-Lattice = meet-semilattice-Order-Theoretic-Meet-Semilattice ( poset-Lattice , is-meet-semilattice-Lattice) meet-Lattice : (x y : type-Lattice) → type-Lattice meet-Lattice x y = pr1 (is-meet-semilattice-Lattice x y) is-join-semilattice-Lattice : is-join-semilattice-Poset poset-Lattice is-join-semilattice-Lattice = pr2 is-lattice-Lattice join-semilattice-Lattice : Join-Semilattice l1 join-semilattice-Lattice = join-semilattice-Order-Theoretic-Join-Semilattice ( poset-Lattice , is-join-semilattice-Lattice) join-Lattice : (x y : type-Lattice) → type-Lattice join-Lattice x y = pr1 (is-join-semilattice-Lattice x y)