Counting the elements of dependent function types
module univalent-combinatorics.dependent-function-types where
Imports
open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-dependent-function-types open import foundation.homotopies open import foundation.propositional-truncations open import foundation.unit-type open import foundation.universal-property-coproduct-types open import foundation.universal-property-empty-type open import foundation.universal-property-unit-type open import foundation.universe-levels open import univalent-combinatorics.cartesian-product-types open import univalent-combinatorics.counting open import univalent-combinatorics.finite-choice open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
Dependent products of finite types indexed by a finite type are finite.
Properties
Counting dependent products indexed by standard finite types
If the elements of A
can be counted and if for each x : A
the elements of
B x
can be counted, then the elements of Π A B
can be counted.
count-Π-Fin : {l1 : Level} (k : ℕ) {B : Fin k → UU l1} → ((x : Fin k) → count (B x)) → count ((x : Fin k) → B x) count-Π-Fin {l1} zero-ℕ {B} e = count-is-contr (dependent-universal-property-empty' B) count-Π-Fin {l1} (succ-ℕ k) {B} e = count-equiv' ( equiv-dependent-universal-property-coprod B) ( count-prod ( count-Π-Fin k (λ x → e (inl x))) ( count-equiv' ( equiv-dependent-universal-property-unit (B ∘ inr)) ( e (inr star))))
Counting on dependent function types
count-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → count A → ((x : A) → count (B x)) → count ((x : A) → B x) count-Π {l1} {l2} {A} {B} e f = count-equiv' ( equiv-precomp-Π (equiv-count e) B) ( count-Π-Fin (number-of-elements-count e) (λ x → f (map-equiv-count e x)))
Finiteness of dependent function types
abstract is-finite-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-finite A → ((x : A) → is-finite (B x)) → is-finite ((x : A) → B x) is-finite-Π {l1} {l2} {A} {B} f g = apply-universal-property-trunc-Prop f ( is-finite-Prop ((x : A) → B x)) ( λ e → apply-universal-property-trunc-Prop ( finite-choice f g) ( is-finite-Prop ((x : A) → B x)) ( λ h → unit-trunc-Prop (count-Π e h))) is-finite-Π' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-finite A → ((x : A) → is-finite (B x)) → is-finite ({x : A} → B x) is-finite-Π' {l1} {l2} {A} {B} f g = is-finite-equiv (( pair ( λ f {x} → f x) ( is-equiv-has-inverse ( λ g x → g {x}) ( refl-htpy) ( refl-htpy)))) (is-finite-Π f g) Π-𝔽 : {l1 l2 : Level} (A : 𝔽 l1) (B : type-𝔽 A → 𝔽 l2) → 𝔽 (l1 ⊔ l2) pr1 (Π-𝔽 A B) = (x : type-𝔽 A) → type-𝔽 (B x) pr2 (Π-𝔽 A B) = is-finite-Π (is-finite-type-𝔽 A) (λ x → is-finite-type-𝔽 (B x)) Π-𝔽' : {l1 l2 : Level} (A : 𝔽 l1) (B : type-𝔽 A → 𝔽 l2) → 𝔽 (l1 ⊔ l2) pr1 (Π-𝔽' A B) = {x : type-𝔽 A} → type-𝔽 (B x) pr2 (Π-𝔽' A B) = is-finite-Π' (is-finite-type-𝔽 A) (λ x → is-finite-type-𝔽 (B x))