Multiplication of matrices
module linear-algebra.multiplication-matrices where
Imports
Definition
Multiplication of matrices
{- mul-vector-matrix : {l : Level} → {K : UU l} → {m n : ℕ} → (K → K → K) → (K → K → K) → K → vec K m → Mat K m n → vec K n mul-vector-matrix _ _ zero empty-vec empty-vec = diagonal zero mul-vector-matrix mulK addK zero (x ∷ xs) (v ∷ vs) = add-vec addK (mul-scalar-vector mulK x v) (mul-vector-matrix mulK addK zero xs vs) mul-Mat : {l' : Level} → {K : UU l'} → {l m n : ℕ} → (K → K → K) → (K → K → K) → K → Mat K l m → Mat K m n → Mat K l n mul-Mat _ _ zero empty-vec _ = empty-vec mul-Mat mulK addK zero (v ∷ vs) m = mul-vector-matrix mulK addK zero v m ∷ mul-Mat mulK addK zero vs m -}
Properties
{- mul-transpose : {l : Level} → {K : UU l} → {m n p : ℕ} → {addK : K → K → K} {mulK : K → K → K} {zero : K} → ((x y : K) → Id (mulK x y) (mulK y x)) → (a : Mat K m n) → (b : Mat K n p) → Id (transpose (mul-Mat mulK addK zero a b)) (mul-Mat mulK addK zero (transpose b) (transpose a)) mul-transpose mulK-comm empty-vec b = {!!} mul-transpose mulK-comm (a ∷ as) b = {!!} -}
Properties of Matrix Multiplication
- distributive laws (incomplete)
- associativity (TODO)
- identity (TODO)
{- module _ {l : Level} {K : UU l} {addK : K → K → K} {mulK : K → K → K} {zero : K} where left-distributive-vector-matrix : {n m : ℕ} → ({l : ℕ} → Id (diagonal {n = l} zero) (add-vec addK (diagonal zero) (diagonal zero))) → ((x y z : K) → (Id (mulK x (addK y z)) (addK (mulK x y) (mulK x z)))) → ((x y : K) → Id (addK x y) (addK y x)) → ((x y z : K) → Id (addK x (addK y z)) (addK (addK x y) z)) → (a : vec K n) (b : Mat K n m) (c : Mat K n m) → Id (mul-vector-matrix mulK addK zero a (add-Mat addK b c)) (add-vec addK (mul-vector-matrix mulK addK zero a b) (mul-vector-matrix mulK addK zero a c)) left-distributive-vector-matrix id-vec _ _ _ empty-vec empty-vec empty-vec = id-vec left-distributive-vector-matrix id-vec k-distr addK-comm addK-associative (a ∷ as) (r1 ∷ r1s) (r2 ∷ r2s) = ap ( λ r → add-vec addK r (mul-vector-matrix mulK addK zero as (add-Mat addK r1s r2s))) (left-distributive-scalar-vector {zero = zero} k-distr a r1 r2) ∙ (ap (λ r → add-vec addK (add-vec addK (map-vec (mulK a) r1) (mul-scalar-vector mulK a r2)) r) (left-distributive-vector-matrix id-vec k-distr addK-comm addK-associative as r1s r2s) ∙ lemma-shuffle) where lemma-shuffle : {n : ℕ} → {x y z w : vec K n} → Id (add-vec addK (add-vec addK x y) (add-vec addK z w)) (add-vec addK (add-vec addK x z) (add-vec addK y w)) lemma-shuffle {x = x} {y = y} {z = z} {w = w} = associative-add-vectors {zero = zero} addK-associative (add-vec addK x y) z w ∙ (commutative-add-vectors {zero = zero} addK-comm (add-vec addK (add-vec addK x y) z) w ∙ (associative-add-vectors {zero = zero} addK-associative w (add-vec addK x y) z ∙ (ap (λ v → add-vec addK (add-vec addK w v) z) (commutative-add-vectors {zero = zero} addK-comm x y) ∙ (ap (λ v → add-vec addK v z) (associative-add-vectors {zero = zero} addK-associative w y x) ∙ (ap (λ v → add-vec addK (add-vec addK v x) z) (commutative-add-vectors {zero = zero} addK-comm w y) ∙ (inv (associative-add-vectors {zero = zero} addK-associative (add-vec addK y w) x z) ∙ commutative-add-vectors {zero = zero} addK-comm (add-vec addK y w) (add-vec addK x z))))))) left-distributive-matrices : {n m p : ℕ} → ({l : ℕ} → Id (diagonal {n = l} zero) (add-vec addK (diagonal zero) (diagonal zero))) → ((x y z : K) → (Id (mulK x (addK y z)) (addK (mulK x y) (mulK x z)))) → ((x y : K) → Id (addK x y) (addK y x)) → ((x y z : K) → Id (addK x (addK y z)) (addK (addK x y) z)) → (a : Mat K m n) (b : Mat K n p) (c : Mat K n p) → Id (mul-Mat mulK addK zero a (add-Mat addK b c)) (add-Mat addK (mul-Mat mulK addK zero a b) (mul-Mat mulK addK zero a c)) left-distributive-matrices _ _ _ _ empty-vec _ _ = refl left-distributive-matrices id-vec k-distr addK-comm addK-associative (a ∷ as) b c = (ap (λ r → r ∷ mul-Mat mulK addK zero as (add-Mat addK b c)) (left-distributive-vector-matrix id-vec k-distr addK-comm addK-associative a b c)) ∙ ap (_∷_ (add-vec addK (mul-vector-matrix mulK addK zero a b) (mul-vector-matrix mulK addK zero a c))) (left-distributive-matrices id-vec k-distr addK-comm addK-associative as b c) -} {- TODO: right distributivity right-distributive-matrices : {n m p : ℕ} → ({l : ℕ} → Id (diagonal {n = l} zero) (add-vec addK (diagonal zero) (diagonal zero))) → ((x y z : K) → (Id (mulK (addK x y) z) (addK (mulK x z) (mulK y z)))) → ((x y : K) → Id (addK x y) (addK y x)) → ((x y z : K) → Id (addK x (addK y z)) (addK (addK x y) z)) → (b : Mat K n p) (c : Mat K n p) (d : Mat K p m) → Id (mul-Mat mulK addK zero (add-Mat addK b c) d) (add-Mat addK (mul-Mat mulK addK zero b d) (mul-Mat mulK addK zero c d)) right-distributive-matrices _ _ _ _ empty-vec empty-vec _ = refl right-distributive-matrices {p = .zero-ℕ} id-vec k-distr addK-comm addK-associative (b ∷ bs) (c ∷ cs) empty-vec = {!!} right-distributive-matrices id-vec k-distr addK-comm addK-associative (b ∷ bs) (c ∷ cs) (d ∷ ds) = {!!} -- this might also need a proof that zero is the additive identity TODO: associativity associative-mul-matrices : {l : Level} {K : UU l} {n m p q : ℕ} → {addK : K → K → K} {mulK : K → K → K} {zero : K} → (x : Mat K m n) → (y : Mat K n p) → (z : Mat K p q) → Id (mul-Mat mulK addK zero x (mul-Mat mulK addK zero y z)) (mul-Mat mulK addK zero (mul-Mat mulK addK zero x y) z) associative-mul-matrices x y z = {!!} -}