Slice precategories
module category-theory.slice-precategories where
Imports
open import category-theory.precategories open import category-theory.products-precategories open import category-theory.pullbacks-precategories open import category-theory.terminal-objects-precategories open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels
Idea
The slice precategory of a precategory C
over an object X
of C
is the
category of objects of C
equipped with a morphism into X
.
Definitions
Objects and morphisms in the slice category
module _ {l1 l2 : Level} (C : Precategory l1 l2) (X : obj-Precategory C) where obj-Slice-Precategory : UU (l1 ⊔ l2) obj-Slice-Precategory = Σ (obj-Precategory C) (λ A → type-hom-Precategory C A X) hom-Slice-Precategory : obj-Slice-Precategory → obj-Slice-Precategory → Set l2 hom-Slice-Precategory (A , f) (B , g) = Σ-Set ( hom-Precategory C A B) ( λ h → set-Prop ( Id-Prop (hom-Precategory C A X) f (comp-hom-Precategory C g h))) type-hom-Slice-Precategory : obj-Slice-Precategory → obj-Slice-Precategory → UU l2 type-hom-Slice-Precategory A B = type-Set (hom-Slice-Precategory A B) is-set-type-hom-Slice-Precategory : (A B : obj-Slice-Precategory) → is-set (type-hom-Slice-Precategory A B) is-set-type-hom-Slice-Precategory A B = is-set-type-Set (hom-Slice-Precategory A B) Eq-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f g : type-hom-Slice-Precategory A B) → UU l2 Eq-hom-Slice-Precategory f g = (pr1 f = pr1 g) refl-Eq-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → Eq-hom-Slice-Precategory f f refl-Eq-hom-Slice-Precategory f = refl extensionality-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f g : type-hom-Slice-Precategory A B) → (f = g) ≃ Eq-hom-Slice-Precategory f g extensionality-hom-Slice-Precategory {A} {B} = extensionality-type-subtype' ( λ h → Id-Prop ( hom-Precategory C (pr1 A) X) ( pr2 A) ( comp-hom-Precategory C (pr2 B) h)) eq-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f g : type-hom-Slice-Precategory A B) → Eq-hom-Slice-Precategory f g → f = g eq-hom-Slice-Precategory f g = map-inv-equiv (extensionality-hom-Slice-Precategory f g)
Identity morphisms in the slice category
id-hom-Slice-Precategory : (A : obj-Slice-Precategory) → type-hom-Slice-Precategory A A pr1 (id-hom-Slice-Precategory A) = id-hom-Precategory C pr2 (id-hom-Slice-Precategory A) = inv (right-unit-law-comp-hom-Precategory C (pr2 A))
Composition of morphisms in the slice category
comp-hom-Slice-Precategory : {A1 A2 A3 : obj-Slice-Precategory} → type-hom-Slice-Precategory A2 A3 → type-hom-Slice-Precategory A1 A2 → type-hom-Slice-Precategory A1 A3 pr1 (comp-hom-Slice-Precategory g f) = comp-hom-Precategory C (pr1 g) (pr1 f) pr2 (comp-hom-Slice-Precategory g f) = ( pr2 f) ∙ ( ( ap (λ u → comp-hom-Precategory C u (pr1 f)) (pr2 g)) ∙ ( associative-comp-hom-Precategory C _ (pr1 g) (pr1 f)))
Associativity of composition of morphisms in the slice category
associative-comp-hom-Slice-Precategory : {A1 A2 A3 A4 : obj-Slice-Precategory} → (h : type-hom-Slice-Precategory A3 A4) (g : type-hom-Slice-Precategory A2 A3) (f : type-hom-Slice-Precategory A1 A2) → ( comp-hom-Slice-Precategory (comp-hom-Slice-Precategory h g) f) = ( comp-hom-Slice-Precategory h (comp-hom-Slice-Precategory g f)) associative-comp-hom-Slice-Precategory h g f = eq-hom-Slice-Precategory ( comp-hom-Slice-Precategory (comp-hom-Slice-Precategory h g) f) ( comp-hom-Slice-Precategory h (comp-hom-Slice-Precategory g f)) ( associative-comp-hom-Precategory C (pr1 h) (pr1 g) (pr1 f))
The left unit law for composition of morphisms in the slice category
left-unit-law-comp-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → comp-hom-Slice-Precategory (id-hom-Slice-Precategory B) f = f left-unit-law-comp-hom-Slice-Precategory f = eq-hom-Slice-Precategory ( comp-hom-Slice-Precategory (id-hom-Slice-Precategory _) f) ( f) ( left-unit-law-comp-hom-Precategory C (pr1 f))
The right unit law for composition of morphisms in the slice category
right-unit-law-comp-hom-Slice-Precategory : {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → comp-hom-Slice-Precategory f (id-hom-Slice-Precategory A) = f right-unit-law-comp-hom-Slice-Precategory f = eq-hom-Slice-Precategory ( comp-hom-Slice-Precategory f (id-hom-Slice-Precategory _)) ( f) ( right-unit-law-comp-hom-Precategory C (pr1 f))
The slice precategory
Slice-Precategory : Precategory (l1 ⊔ l2) l2 pr1 Slice-Precategory = obj-Slice-Precategory pr1 (pr2 Slice-Precategory) = hom-Slice-Precategory pr1 (pr1 (pr2 (pr2 Slice-Precategory))) = comp-hom-Slice-Precategory pr2 (pr1 (pr2 (pr2 Slice-Precategory))) = associative-comp-hom-Slice-Precategory pr1 (pr2 (pr2 (pr2 Slice-Precategory))) = id-hom-Slice-Precategory pr1 (pr2 (pr2 (pr2 (pr2 Slice-Precategory)))) = left-unit-law-comp-hom-Slice-Precategory pr2 (pr2 (pr2 (pr2 (pr2 Slice-Precategory)))) = right-unit-law-comp-hom-Slice-Precategory
Properties
The slice precategory always has a terminal object
The terminal object in the slice (pre-)category C/X
is the identity morphism
id : hom X X
.
module _ {l1 l2 : Level} (C : Precategory l1 l2) (X : obj-Precategory C) where terminal-object-Precategory-Slice-Precategory : terminal-object-Precategory (Slice-Precategory C X) pr1 terminal-object-Precategory-Slice-Precategory = (X , id-hom-Precategory C) pr2 terminal-object-Precategory-Slice-Precategory (A , f) = is-contr-equiv ( Σ (type-hom-Precategory C A X) (λ g → f = g)) ( equiv-tot ( λ g → equiv-concat' f (left-unit-law-comp-hom-Precategory C g))) ( is-contr-total-path f)
Products in slice precategories are pullbacks in the original category
module _ {l1 l2 : Level} (C : Precategory l1 l2) {A X Y : obj-Precategory C} (f : type-hom-Precategory C X A) (g : type-hom-Precategory C Y A) where module _ {W : obj-Precategory C} (p₁ : type-hom-Precategory C W X) (p₂ : type-hom-Precategory C W Y) (p : type-hom-Precategory C W A) (α₁ : p = comp-hom-Precategory C f p₁) (α₂ : p = comp-hom-Precategory C g p₂) (α : comp-hom-Precategory C f p₁ = comp-hom-Precategory C g p₂) where map-is-pullback-is-product-Slice-Precategory : is-pullback-Precategory C A X Y f g W p₁ p₂ α → is-product-Precategory (Slice-Precategory C A) (X , f) (Y , g) (W , p) (p₁ , α₁) (p₂ , α₂) map-is-pullback-is-product-Slice-Precategory ϕ (Z , .(comp-hom-Precategory C f h₁)) (h₁ , refl) (h₂ , β₂) = is-contr-Σ-is-prop c d q σ where c : type-hom-Precategory ( Slice-Precategory C A) ( Z , comp-hom-Precategory C f h₁) ( W , p) pr1 c = pr1 (pr1 (ϕ Z h₁ h₂ β₂)) pr2 c = ( ap ( comp-hom-Precategory C f) ( inv (pr1 (pr2 (pr1 (ϕ Z h₁ h₂ β₂)))))) ∙ ( inv (associative-comp-hom-Precategory C f p₁ _) ∙ ap ( λ k → comp-hom-Precategory C k (pr1 (pr1 (ϕ Z h₁ h₂ β₂)))) ( inv α₁)) d : ( ( comp-hom-Precategory (Slice-Precategory C A) (p₁ , α₁) c) = ( h₁ , refl)) × ( ( comp-hom-Precategory (Slice-Precategory C A) (p₂ , α₂) c) = ( h₂ , β₂)) pr1 d = eq-hom-Slice-Precategory C A _ _ (pr1 (pr2 (pr1 (ϕ Z h₁ h₂ β₂)))) pr2 d = eq-hom-Slice-Precategory C A _ _ (pr2 (pr2 (pr1 (ϕ Z h₁ h₂ β₂)))) q : ∀ k → is-prop ( ( comp-hom-Precategory (Slice-Precategory C A) (p₁ , α₁) k = (h₁ , refl)) × ( comp-hom-Precategory (Slice-Precategory C A) (p₂ , α₂) k = (h₂ , β₂))) q k = is-prop-prod ( is-set-type-Set (hom-Slice-Precategory C A _ _) _ _) ( is-set-type-Set (hom-Slice-Precategory C A _ _) _ _) σ : ∀ k → ( ( comp-hom-Precategory ( Slice-Precategory C A) ( p₁ , α₁) ( k)) = ( h₁ , refl)) × ( ( comp-hom-Precategory ( Slice-Precategory C A) ( p₂ , α₂) ( k)) = ( h₂ , β₂)) → c = k σ (k , γ) (γ₁ , γ₂) = eq-hom-Slice-Precategory C A _ _ ( ap pr1 (pr2 (ϕ Z h₁ h₂ β₂) (k , (ap pr1 γ₁ , ap pr1 γ₂)))) map-inv-is-pullback-is-product-Slice-Precategory : is-product-Precategory (Slice-Precategory C A) (X , f) (Y , g) (W , p) (p₁ , α₁) (p₂ , α₂) → is-pullback-Precategory C A X Y f g W p₁ p₂ α map-inv-is-pullback-is-product-Slice-Precategory ψ W' p₁' p₂' α' = is-contr-Σ-is-prop k γ q σ where k : type-hom-Precategory C W' W k = pr1 ( pr1 ( pr1 ( ψ ( W' , comp-hom-Precategory C f p₁') ( p₁' , refl) ( p₂' , α')))) γ : (comp-hom-Precategory C p₁ k = p₁') × (comp-hom-Precategory C p₂ k = p₂') pr1 γ = ap pr1 ( pr1 ( pr2 ( pr1 ( ψ ( W' , comp-hom-Precategory C f p₁') ( p₁' , refl) ( p₂' , α'))))) pr2 γ = ap pr1 ( pr2 ( pr2 ( pr1 ( ψ ( W' , comp-hom-Precategory C f p₁') ( p₁' , refl) ( p₂' , α'))))) q : ∀ k' → is-prop (( comp-hom-Precategory C p₁ k' = p₁') × ( comp-hom-Precategory C p₂ k' = p₂')) q k' = is-prop-prod ( is-set-type-Set (hom-Precategory C _ _) _ _) ( is-set-type-Set (hom-Precategory C _ _) _ _) σ : ( k' : type-hom-Precategory C W' W) → ( γ' : ( comp-hom-Precategory C p₁ k' = p₁') × ( comp-hom-Precategory C p₂ k' = p₂')) → k = k' σ k' (γ₁ , γ₂) = ap ( pr1 ∘ pr1) ( pr2 ( ψ (W' , comp-hom-Precategory C f p₁') (p₁' , refl) (p₂' , α')) ( ( ( k') , ( ( ap (comp-hom-Precategory C f) (inv γ₁)) ∙ ( ( inv (associative-comp-hom-Precategory C f p₁ k')) ∙ ( ap (λ l → comp-hom-Precategory C l k') (inv α₁))))) , ( eq-hom-Slice-Precategory C A _ _ γ₁) , ( eq-hom-Slice-Precategory C A _ _ γ₂))) equiv-is-pullback-is-product-Slice-Precategory : is-pullback-Precategory C A X Y f g W p₁ p₂ α ≃ is-product-Precategory (Slice-Precategory C A) (X , f) (Y , g) (W , p) (p₁ , α₁) (p₂ , α₂) equiv-is-pullback-is-product-Slice-Precategory = equiv-prop ( is-prop-is-pullback-Precategory C A X Y f g W p₁ p₂ α) ( is-prop-is-product-Precategory (Slice-Precategory C A) (X , f) (Y , g) (W , p) (p₁ , α₁) (p₂ , α₂)) ( map-is-pullback-is-product-Slice-Precategory) ( map-inv-is-pullback-is-product-Slice-Precategory) map-pullback-product-Slice-Precategory : pullback-Precategory C A X Y f g → product-Precategory (Slice-Precategory C A) (X , f) (Y , g) pr1 (map-pullback-product-Slice-Precategory (W , p₁ , p₂ , α , q)) = (W , comp-hom-Precategory C f p₁) pr1 (pr2 (map-pullback-product-Slice-Precategory (W , p₁ , p₂ , α , q))) = (p₁ , refl) pr1 ( pr2 ( pr2 (map-pullback-product-Slice-Precategory (W , p₁ , p₂ , α , q)))) = (p₂ , α) pr2 ( pr2 ( pr2 (map-pullback-product-Slice-Precategory (W , p₁ , p₂ , α , q)))) = map-is-pullback-is-product-Slice-Precategory p₁ p₂ (comp-hom-Precategory C f p₁) refl α α q map-inv-pullback-product-Slice-Precategory : product-Precategory (Slice-Precategory C A) (X , f) (Y , g) → pullback-Precategory C A X Y f g pr1 (map-inv-pullback-product-Slice-Precategory ((Z , h) , (h₁ , β₁) , (h₂ , β₂) , q)) = Z pr1 (pr2 (map-inv-pullback-product-Slice-Precategory ((Z , h) , (h₁ , β₁) , (h₂ , β₂) , q))) = h₁ pr1 (pr2 (pr2 (map-inv-pullback-product-Slice-Precategory ((Z , h) , (h₁ , β₁) , (h₂ , β₂) , q)))) = h₂ pr1 (pr2 (pr2 (pr2 (map-inv-pullback-product-Slice-Precategory ((Z , h) , (h₁ , β₁) , (h₂ , β₂) , q))))) = inv β₁ ∙ β₂ pr2 (pr2 (pr2 (pr2 (map-inv-pullback-product-Slice-Precategory ((Z , h) , (h₁ , β₁) , (h₂ , β₂) , q))))) = map-inv-is-pullback-is-product-Slice-Precategory h₁ h₂ h β₁ β₂ ( inv β₁ ∙ β₂) ( q) issec-map-inv-pullback-product-Slice-Precategory : ( map-pullback-product-Slice-Precategory ∘ map-inv-pullback-product-Slice-Precategory) ~ id issec-map-inv-pullback-product-Slice-Precategory ((Z , .(comp-hom-Precategory C f h₁)) , (h₁ , refl) , (h₂ , β₂) , q) = eq-pair-Σ ( refl) ( eq-pair-Σ ( refl) ( eq-type-subtype ( λ _ → is-product-Precategory-Prop ( Slice-Precategory C A) ( X , f) ( Y , g) ( _) ( _) ( _)) ( refl))) isretr-map-inv-pullback-product-Slice-Precategory : ( map-inv-pullback-product-Slice-Precategory ∘ map-pullback-product-Slice-Precategory) ~ id isretr-map-inv-pullback-product-Slice-Precategory (W , p₁ , p₂ , α , q) = eq-pair-Σ ( refl) ( eq-pair-Σ ( refl) ( eq-pair-Σ ( refl) ( eq-type-subtype (λ _ → is-pullback-Precategory-Prop C A X Y f g _ _ _ α) ( refl)))) equiv-pullback-product-Slice-Precategory : pullback-Precategory C A X Y f g ≃ product-Precategory (Slice-Precategory C A) (X , f) (Y , g) pr1 equiv-pullback-product-Slice-Precategory = map-pullback-product-Slice-Precategory pr2 equiv-pullback-product-Slice-Precategory = is-equiv-has-inverse map-inv-pullback-product-Slice-Precategory issec-map-inv-pullback-product-Slice-Precategory isretr-map-inv-pullback-product-Slice-Precategory