Symmetric concrete groups
module group-theory.symmetric-concrete-groups where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.mere-equality open import foundation.sets open import foundation.subtype-identity-principle open import foundation.universe-levels open import group-theory.automorphism-groups open import group-theory.concrete-groups
Idea
The symmetric concrete group of a set X
is the connected component of the
universe of sets at X
.
Definition
module _ {l : Level} (A : Set l) where classifying-type-symmetric-Concrete-Group : UU (lsuc l) classifying-type-symmetric-Concrete-Group = classifying-type-Automorphism-Group (Set-1-Type l) A shape-symmetric-Concrete-Group : classifying-type-symmetric-Concrete-Group shape-symmetric-Concrete-Group = shape-Automorphism-Group (Set-1-Type l) A symmetric-Concrete-Group : Concrete-Group (lsuc l) symmetric-Concrete-Group = Automorphism-Group (Set-1-Type l) A
Properties
Characterizing equality of the classifying type of the symmetric concrete groups
module _ {l : Level} (A : Set l) where equiv-classifying-type-symmetric-Concrete-Group : (X Y : classifying-type-symmetric-Concrete-Group A) → UU l equiv-classifying-type-symmetric-Concrete-Group X Y = type-equiv-Set (pr1 X) (pr1 Y) type-symmetric-Concrete-Group : UU l type-symmetric-Concrete-Group = equiv-classifying-type-symmetric-Concrete-Group ( shape-symmetric-Concrete-Group A) ( shape-symmetric-Concrete-Group A) extensionality-classifying-type-symmetric-Concrete-Group : (X Y : classifying-type-symmetric-Concrete-Group A) → (X = Y) ≃ equiv-classifying-type-symmetric-Concrete-Group X Y extensionality-classifying-type-symmetric-Concrete-Group X = extensionality-type-subtype ( λ Y → mere-eq-Prop Y A) ( pr2 X) ( id-equiv) ( extensionality-Set (pr1 X)) equiv-eq-classifying-type-symmetric-Concrete-Group : (X Y : classifying-type-symmetric-Concrete-Group A) → (X = Y) → equiv-classifying-type-symmetric-Concrete-Group X Y equiv-eq-classifying-type-symmetric-Concrete-Group X Y = map-equiv (extensionality-classifying-type-symmetric-Concrete-Group X Y) refl-equiv-eq-classifying-type-symmetric-Concrete-Group : (X : classifying-type-symmetric-Concrete-Group A) → equiv-eq-classifying-type-symmetric-Concrete-Group X X refl = id-equiv refl-equiv-eq-classifying-type-symmetric-Concrete-Group X = refl preserves-mul-equiv-eq-classifying-type-symmetric-Concrete-Group : (X Y Z : classifying-type-symmetric-Concrete-Group A) (q : Y = Z) (p : X = Y) → equiv-eq-classifying-type-symmetric-Concrete-Group X Z (p ∙ q) = ( ( equiv-eq-classifying-type-symmetric-Concrete-Group Y Z q) ∘e ( equiv-eq-classifying-type-symmetric-Concrete-Group X Y p)) preserves-mul-equiv-eq-classifying-type-symmetric-Concrete-Group X .X Z q refl = inv ( right-unit-law-equiv ( equiv-eq-classifying-type-symmetric-Concrete-Group X Z q))