Isomorphisms of commutative rings
module commutative-algebra.isomorphisms-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.subtype-identity-principle open import foundation.universe-levels open import ring-theory.isomorphisms-rings
Idea
An isomorphism of commutative rings is an invertible homomorphism of commutative rings.
Definition
iso-Commutative-Ring : { l1 l2 : Level} → Commutative-Ring l1 → Commutative-Ring l2 → UU (l1 ⊔ l2) iso-Commutative-Ring A B = iso-Ring (ring-Commutative-Ring A) (ring-Commutative-Ring B) is-contr-total-iso-Commutative-Ring : { l1 : Level} (A : Commutative-Ring l1) → is-contr (Σ (Commutative-Ring l1) (iso-Commutative-Ring A)) is-contr-total-iso-Commutative-Ring A = is-contr-total-Eq-subtype ( is-contr-total-iso-Ring (ring-Commutative-Ring A)) ( is-prop-is-commutative-Ring) ( ring-Commutative-Ring A) ( id-iso-Ring (ring-Commutative-Ring A)) ( commutative-mul-Commutative-Ring A)