The W-type of the type of propositions
module trees.w-type-of-propositions where
Imports
open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import trees.extensional-w-types open import trees.w-types
Idea
The W-type of the type of propositions is defined using the type of propositions and the canonical type family over it.
Definition
𝕎-Prop : (l : Level) → UU (lsuc l) 𝕎-Prop l = 𝕎 (Prop l) type-Prop zero-𝕎-Prop : {l : Level} → 𝕎-Prop l zero-𝕎-Prop {l} = constant-𝕎 (raise-empty-Prop l) is-empty-raise-empty succ-𝕎-Prop : {l : Level} → 𝕎-Prop l → 𝕎-Prop l succ-𝕎-Prop {l} P = tree-𝕎 (raise-unit-Prop l) (λ x → P)
Standard subfinite types(?)
standard-subfinite-type : {l : Level} → 𝕎-Prop l → UU l standard-subfinite-type (tree-𝕎 P α) = Σ (type-Prop P) (λ p → standard-subfinite-type (α p)) + type-Prop P
Properties
𝕎-Prop is extensional
is-extensional-𝕎-Prop : {l : Level} → is-extensional-𝕎 (Prop l) type-Prop is-extensional-𝕎-Prop = is-extensional-is-univalent-𝕎 is-univalent-type-Prop
𝕎-Prop is a set
is-set-𝕎-Prop : {l : Level} → is-set (𝕎-Prop l) is-set-𝕎-Prop = is-set-𝕎 is-set-type-Prop