Large locales
module order-theory.large-locales where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-frames open import order-theory.large-meet-semilattices open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.top-elements-large-posets open import order-theory.upper-bounds-large-posets
Idea
A large locale is a large meet-suplattice satisfying the distributive law for meets over suprema.
Definitions
Large locales
Large-Locale : (α : Level → Level) (β : Level → Level → Level) → UUω Large-Locale α β = Large-Frame α β module _ {α : Level → Level} {β : Level → Level → Level} (L : Large-Locale α β) where large-poset-Large-Locale : Large-Poset α β large-poset-Large-Locale = large-poset-Large-Frame L large-preorder-Large-Locale : Large-Preorder α β large-preorder-Large-Locale = large-preorder-Large-Poset large-poset-Large-Locale set-Large-Locale : (l : Level) → Set (α l) set-Large-Locale = set-Large-Frame L type-Large-Locale : (l : Level) → UU (α l) type-Large-Locale = type-Large-Frame L is-set-type-Large-Locale : {l : Level} → is-set (type-Large-Locale l) is-set-type-Large-Locale = is-set-type-Large-Frame L leq-Large-Locale-Prop : {l1 l2 : Level} → type-Large-Locale l1 → type-Large-Locale l2 → Prop (β l1 l2) leq-Large-Locale-Prop = leq-Large-Frame-Prop L leq-Large-Locale : {l1 l2 : Level} → type-Large-Locale l1 → type-Large-Locale l2 → UU (β l1 l2) leq-Large-Locale = leq-Large-Frame L is-prop-leq-Large-Locale : {l1 l2 : Level} (x : type-Large-Locale l1) (y : type-Large-Locale l2) → is-prop (leq-Large-Locale x y) is-prop-leq-Large-Locale = is-prop-leq-Large-Frame L leq-eq-Large-Locale : {l1 : Level} {x y : type-Large-Locale l1} → (x = y) → leq-Large-Locale x y leq-eq-Large-Locale = leq-eq-Large-Frame L refl-leq-Large-Locale : {l1 : Level} (x : type-Large-Locale l1) → leq-Large-Locale x x refl-leq-Large-Locale = refl-leq-Large-Frame L antisymmetric-leq-Large-Locale : {l1 : Level} (x y : type-Large-Locale l1) → leq-Large-Locale x y → leq-Large-Locale y x → x = y antisymmetric-leq-Large-Locale = antisymmetric-leq-Large-Frame L transitive-leq-Large-Locale : {l1 l2 l3 : Level} (x : type-Large-Locale l1) (y : type-Large-Locale l2) (z : type-Large-Locale l3) → leq-Large-Locale y z → leq-Large-Locale x y → leq-Large-Locale x z transitive-leq-Large-Locale = transitive-leq-Large-Frame L is-large-meet-semilattice-Large-Locale : is-large-meet-semilattice-Large-Poset large-poset-Large-Locale is-large-meet-semilattice-Large-Locale = is-large-meet-semilattice-Large-Frame L large-meet-semilattice-Large-Locale : Large-Meet-Semilattice α β large-meet-semilattice-Large-Locale = large-meet-semilattice-Large-Frame L has-meets-Large-Locale : has-meets-Large-Poset large-poset-Large-Locale has-meets-Large-Locale = has-meets-Large-Meet-Semilattice large-meet-semilattice-Large-Locale meet-Large-Locale : {l1 l2 : Level} → type-Large-Locale l1 → type-Large-Locale l2 → type-Large-Locale (l1 ⊔ l2) meet-Large-Locale = meet-Large-Frame L is-greatest-binary-lower-bound-meet-Large-Locale : {l1 l2 : Level} → (x : type-Large-Locale l1) (y : type-Large-Locale l2) → is-greatest-binary-lower-bound-Large-Poset ( large-poset-Large-Locale) ( x) ( y) ( meet-Large-Locale x y) is-greatest-binary-lower-bound-meet-Large-Locale = is-greatest-binary-lower-bound-meet-Large-Frame L ap-meet-Large-Locale : {l1 l2 : Level} → {x x' : type-Large-Locale l1} {y y' : type-Large-Locale l2} → (x = x') → (y = y') → (meet-Large-Locale x y = meet-Large-Locale x' y') ap-meet-Large-Locale = ap-meet-Large-Frame L has-top-element-Large-Locale : has-top-element-Large-Poset large-poset-Large-Locale has-top-element-Large-Locale = has-top-element-Large-Frame L top-Large-Locale : type-Large-Locale lzero top-Large-Locale = top-Large-Frame L is-top-element-top-Large-Locale : {l1 : Level} (x : type-Large-Locale l1) → leq-Large-Locale x top-Large-Locale is-top-element-top-Large-Locale = is-top-element-top-Large-Frame L large-suplattice-Large-Locale : Large-Suplattice α β large-suplattice-Large-Locale = large-suplattice-Large-Frame L is-large-suplattice-Large-Locale : is-large-suplattice-Large-Poset large-poset-Large-Locale is-large-suplattice-Large-Locale = is-large-suplattice-Large-Frame L sup-Large-Locale : {l1 l2 : Level} {I : UU l1} → (I → type-Large-Locale l2) → type-Large-Locale (l1 ⊔ l2) sup-Large-Locale = sup-Large-Frame L is-least-upper-bound-sup-Large-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Locale l2) → is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-Large-Locale) ( x) ( sup-Large-Locale x) is-least-upper-bound-sup-Large-Locale = is-least-upper-bound-sup-Large-Frame L is-upper-bound-sup-Large-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Locale l2) → is-upper-bound-family-of-elements-Large-Poset ( large-poset-Large-Locale) ( x) ( sup-Large-Locale x) is-upper-bound-sup-Large-Locale = is-upper-bound-sup-Large-Frame L distributive-meet-sup-Large-Locale : {l1 l2 l3 : Level} (x : type-Large-Poset large-poset-Large-Locale l1) {I : UU l2} (y : I → type-Large-Poset large-poset-Large-Locale l3) → meet-Large-Locale x (sup-Large-Locale y) = sup-Large-Locale (λ i → meet-Large-Locale x (y i)) distributive-meet-sup-Large-Locale = distributive-meet-sup-Large-Frame L