Pregroupoids
module category-theory.pregroupoids where
Imports
open import category-theory.isomorphisms-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
A pregroupoid is a precategory in which every morphism is an isomorphism.
Definition
is-groupoid-Precategory-Prop : {l1 l2 : Level} (C : Precategory l1 l2) → Prop (l1 ⊔ l2) is-groupoid-Precategory-Prop C = Π-Prop ( obj-Precategory C) ( λ x → Π-Prop ( obj-Precategory C) ( λ y → Π-Prop ( type-hom-Precategory C x y) ( λ f → is-iso-Precategory-Prop C f))) is-groupoid-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2) is-groupoid-Precategory C = type-Prop (is-groupoid-Precategory-Prop C) Pregroupoid : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Pregroupoid l1 l2 = Σ (Precategory l1 l2) is-groupoid-Precategory