Monomorphisms of concrete groups
module group-theory.monomorphisms-concrete-groups where
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.propositions open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.homomorphisms-concrete-groups
Idea
A monomorphism of concrete groups from G
to H
is a faithful pointed map BH
→∗ BG. Recall that a map is said to be faithful if it induces embeddings on
identity types. In particular, any faithful pointed map BH →∗ BG induces an
embedding ΩBH → ΩBG, i.e., an inclusion of the underlying groups of a concrete
group.
module _ {l1 l2 : Level} (l3 : Level) (G : Concrete-Group l1) (H : Concrete-Group l2) (f : hom-Concrete-Group G H) where is-mono-hom-Concrete-Group-Prop : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-hom-Concrete-Group-Prop = Π-Prop ( Concrete-Group l3) ( λ F → is-emb-Prop (comp-hom-Concrete-Group F G H f)) is-mono-hom-Concrete-Group : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono-hom-Concrete-Group = type-Prop is-mono-hom-Concrete-Group-Prop is-prop-is-mono-hom-Concrete-Group : is-prop is-mono-hom-Concrete-Group is-prop-is-mono-hom-Concrete-Group = is-prop-type-Prop is-mono-hom-Concrete-Group-Prop module _ {l1 : Level} (l2 : Level) (G : Concrete-Group l1) where mono-Concrete-Group : UU (l1 ⊔ lsuc l2) mono-Concrete-Group = Σ ( Concrete-Group l2) ( λ H → Σ (hom-Concrete-Group H G) λ f → is-mono-hom-Concrete-Group l2 H G f)