The precategory of abelian groups
module group-theory.precategory-of-abelian-groups where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.homomorphisms-abelian-groups
Idea
The precategory of abelian groups consists of abelian groups and group homomorphisms.
Definition
The large precategory of abelian groups
ab-Precategory : Large-Precategory lsuc (λ l1 l2 → l1 ⊔ l2) Large-Precategory.obj-Large-Precategory ab-Precategory = Ab Large-Precategory.hom-Large-Precategory ab-Precategory = hom-Ab Large-Precategory.comp-hom-Large-Precategory ab-Precategory {X = A} {B} {C} = comp-hom-Ab A B C Large-Precategory.id-hom-Large-Precategory ab-Precategory {X = A} = id-hom-Ab A Large-Precategory.associative-comp-hom-Large-Precategory ab-Precategory {X = A} {B} {C} {D} = associative-comp-hom-Ab A B C D Large-Precategory.left-unit-law-comp-hom-Large-Precategory ab-Precategory {X = A} {B} = left-unit-law-comp-hom-Ab A B Large-Precategory.right-unit-law-comp-hom-Large-Precategory ab-Precategory {X = A} {B} = right-unit-law-comp-hom-Ab A B