Stabilizer groups
module group-theory.stabilizer-groups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups
Idea
Given a G-set X
, the stabilizer group at an element x
of X
is the subgroup
of elements g
of G
that keep x
fixed.
Definition
module _ {l1 l2 : Level} (G : Group l1) (X : Abstract-Group-Action G l2) where type-stabilizer-Abstract-Group-Action : type-Abstract-Group-Action G X → UU (l1 ⊔ l2) type-stabilizer-Abstract-Group-Action x = Σ (type-Group G) (λ g → Id (mul-Abstract-Group-Action G X g x) x)