Products of unordered pairs of types
module foundation.products-unordered-pairs-of-types where
Imports
open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-function-types open import foundation.identity-types open import foundation.symmetric-operations open import foundation.unordered-pairs open import foundation.unordered-pairs-of-types open import foundation-core.cartesian-product-types open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.functions open import foundation-core.universe-levels open import univalent-combinatorics.2-element-types open import univalent-combinatorics.universal-property-standard-finite-types
Idea
Given an unordered pair of types, we can take their product. This is a symmetric version of the cartesian product operation on types.
Definition
product-unordered-pair-types : {l : Level} → symmetric-operation (UU l) (UU l) product-unordered-pair-types p = (x : type-unordered-pair p) → element-unordered-pair p x pr-product-unordered-pair-types : {l : Level} (p : unordered-pair-types l) (i : type-unordered-pair p) → product-unordered-pair-types p → element-unordered-pair p i pr-product-unordered-pair-types p i f = f i equiv-pr-product-unordered-pair-types : {l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) → product-unordered-pair-types A ≃ (element-unordered-pair A i × other-element-unordered-pair A i) equiv-pr-product-unordered-pair-types A i = ( ( equiv-prod ( equiv-tr ( element-unordered-pair A) ( compute-map-equiv-point-2-Element-Type ( 2-element-type-unordered-pair A) ( i))) ( equiv-tr ( element-unordered-pair A) ( compute-map-equiv-point-2-Element-Type' ( 2-element-type-unordered-pair A) ( i)))) ∘e ( equiv-dependent-universal-property-Fin-two-ℕ ( ( element-unordered-pair A) ∘ ( map-equiv-point-2-Element-Type ( 2-element-type-unordered-pair A) ( i))))) ∘e ( equiv-precomp-Π ( equiv-point-2-Element-Type (2-element-type-unordered-pair A) (i)) ( element-unordered-pair A)) equiv-pair-product-unordered-pair-types : {l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) → (element-unordered-pair A i × other-element-unordered-pair A i) ≃ product-unordered-pair-types A equiv-pair-product-unordered-pair-types A i = inv-equiv (equiv-pr-product-unordered-pair-types A i) pair-product-unordered-pair-types : {l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) → element-unordered-pair A i → other-element-unordered-pair A i → product-unordered-pair-types A pair-product-unordered-pair-types A i x y = map-equiv (equiv-pair-product-unordered-pair-types A i) (pair x y)
Equivalences of products of unordered pairs of types
module _ {l1 l2 : Level} (A : unordered-pair-types l1) (B : unordered-pair-types l2) where equiv-product-unordered-pair-types : equiv-unordered-pair-types A B → product-unordered-pair-types A ≃ product-unordered-pair-types B equiv-product-unordered-pair-types e = equiv-Π ( element-unordered-pair B) ( equiv-type-equiv-unordered-pair-types A B e) ( equiv-element-equiv-unordered-pair-types A B e)